INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming.
While the most advanced technology has been used to photograph and reproduce
this document, the quality of the reproduction is heavily dependent upon the
quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or
notations which may appear on this reproduction.

1.

The sign or “target” for pages apparently lacking from the document
photographed is “Missing Page(s)”. If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages. This
may have necessitated cutting through an image and duplicating adjacent pages
to assure complete continuity.

. When an image on the film is obliterated with a round black mark, it is an

indication of either blurred copy because of movement during exposure,
duplicate copy, or copyrighted materials that should not have been filmed. For
blurred pages, a good image of the page can be found in the adjacent frame. If
copyrighted materials were deleted, a target note will appear listing the pages in
the adjacent frame.

. When a map, drawing or chart, etc., is part of the material being photographed,

a definite method of “sectioning” the material has been followed. It is
customary to begin filming at the upper left hand corner of a large sheet and to
continue from left to right in eqgual sections with small overlaps. If necessary,
sectioning is continued again—beginning below the first row and continuing on
until compilete. :

. For illustrations that cannot be satisfactorily reproduced by xerographic

means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. These prints arec available upon request from the
Dissertations Customer Services Department,

. Some pages in any document may have indistinct print. In all cases the best

available copy has been filmed.
Universi
Micrdfilms
national

300 N. Zeeb Road
Ann Arbor, Ml 48106

8518287

Wilhite, Alan Wade

FOUNDATION TECHNIQUES FOR THE DEVELOPMENT OF A COMPUTER-
AIDED ENGINEERING SYSTEM FOR AEROSPACE VEHICLES

North Carolina State University at Raleigh PH.D. 1985

University
Microfilms
International soon. zeeb Road, ann Arbor, iss108

PLEASE NOTE:

=y

in all cases this material has been filmed in the best possible way from the available copy.
Problems encountered with this document have been identified here witha check mark_ v .

-l
-

©® ©® N O o s> ©® N

-t -d
-h (o]
- -

12.
13.
14.
15.

Glossy photographs or pages

Colored illusﬁ'ations, paper or print

Photographs with dark background

lllustrations are poor copy

Pages with black marks, not original copy

Print shows through as there is text on both sides of page

Indistinct, broken or small print on several pages

Print exceeds margin requirements

Tightly bound copy with print lost in spine

Computer printout pages with indistinct print

Page(s) lacking when material received, and not available from school or

author,
Page(s) 47 seem to be missing in numbering only as text follows,
Two pages humbered . Text follows.

Curling and wrinkled pages
Other

University
Microfilms
International

FOUNDATION TECHNIQUES FOR THE DEVELOPMENT
OF A
COMPUTER-AIDED ENGINEERING SYSTEM
FOR

AEROSPACE VEHICLES

by "
ALAN W. WILHITE

A thesis submitted to the Graduate Faculty of
North Carolina State University
in partial fulfillment of the
requirements for the Degree of .
Dcetor of Philosophy

DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING

RALEIGH

1985

APPROVED BY:

Q;Lﬁflﬂ_l? NY N

M e d R W
Advisory Committee QYairman

BIOGRAPHY

Alan W; Kilhite was born in Portsmouth, Virginia, on December 7,
?9“9. He was reared in Norfolk, Virginia, and graduated from Norview
High School in 1968. He was a co-op student with NASA Langley Research
Center while attending North Carolina State University. He graduated
with a Bachelor of Science degree in 1973 and received a Masters
Degree in Flight Sciences from George Washington University in 1976.

The author has been working in the Space Systems Division at NASA
Langley since 1973. He has published 26 technical papers in the areas
of aerodynamics, flight performance, propulsion integration, vehicle
design, optimization, and computer-aided design. His work has been in
support of the Space Shuttle, advanced launch vehicle, and orbital
transfer vehicle technology programs.

He is presently computer-aided design group leader in the Vehicle
Analysis Branch and is a member of the AIAA Computer-Aided

Design/Computer-Aided Manufacturing (CAD/CAM) technical committee.

-—do

-—do

wnde
ode
wde

ACKNOWLEDGEMENTS

I wish to thank the Program Integration Team (PIT) for their sup-
port in developing my dream. In particular, I would 1like to thank Dr.
James Schwing of 0ld Dominion University for his guidance and support
and for his invaluable research in the user interface that has replaced
the one presented in this dissertation. Also, thanks are extended to
Vicki Crisp of the Kentron Corporation for her helpful suggestions and
the coding and re-coding of ARIS and to Kenny Jones of the Computer
Science Corporation for developing the program communication pre-
compiler. Special thanks are extended to Dr. Fred Dejarnette and Dr.
John Perkins for their guidance and constant reminders of the deadlines.
Finally, I would like to thank my wife, Pat, and children, Jason and

Adam, for their support and understanding.

TABLE OF CONTENTS

INTRODUCTION L . L . [] . L] L] L] L) L]

ENGINEERING DESIGN AND COMPUTER AUTOMATION . . .

PAST APPROACHES TO COMPUTER-~AIDED ENGINEERING .

Geometry

Data Communication and Program Coupling . .
Executive Management/User Interface . . ; .

PERSPECTIVE OF CURRENT DATABASE MANAGEMENT SYSTEMS

PRESENT COMPUTER~AIDED ENGINEERING
Single-User CAE System . . .
User Interface . « « + o«

Program Library:
Procedure Library:' . ¢ .

Configuration Database Library

Data Dictionary . . . o«
Template Library . . .
Activity Log « « « ¢ ¢ &

Multi-User CAE System«
Architecture Discussion . . .

PRESENT CAE SYSTEM DATA MANAGEMENT

Data Entities . « « ¢ ¢ &

Distributive Databases . . .

Data Communication . . . ¢ .«

Data Communication Utilities
Template « « o « o o o o
Data Dictionary' : ¢ ¢ .
Reviewer « ¢« « » « ¢ ¢ «

Parameter Reviewer
Record Reviewer . .
Reviewer Uses . . .

Formatter . « « ¢« o o &

IMPLEMENTATION L] L] . L] L] . L L] L[] .

SAMPLE PROBLEM * . L] . L L L] L4 . .

SYSTEM ARCHITECTURE

e & @& o 0 o o
.

. L] L L] L] L *
. . . .

* L] . L L L .
L] . L[] L4

. . .

L] L] . L] . L] L
. L] Ld . . L 4 L
L] L] . L] L] L2 L

L] L] * L] L L] L]
.
Ld . L L) . L L 4
e & & o & o @
* L] . ® . * .
.
. L
. .
L L] L] * L . .
* ®» o o & s .

. 8. ®. @ o. 0. 0. @

iv

Page

 wmb
o £ W0 W0 0 (S}

* -a

DATA INTERDEPENDENCE

STATUS « v ¢ ¢ ¢ « &

CONCLUSIONS .
REFERENCES . .
FIGURES . . »

APPENDIX . . .«

.

TABLE

OF CONTENTS

(con't)

Page
58
d
63
64
68
98

INTRODUCTION

" In the 1960's, the Space Systems Division was created at NASA
Langley Research Center to develop advanced technologies for spacecraft,
space stations, and especially space transportation, i.e., the Space
~Shuttle. In the late 1960's groups were formed to evaluate aircraft
company proposals for the Space Shuttle in the areas of aerodynamics,
heating, weights, flight control, and flight performance.

The results of these groups were invaluable to the Shuttle program,
. but it was very expensive and time consuming to conduct these studies.
”For a complete design analysis, each group had to work on the same
configuration simultaneously. In general, each group depended on data
generated by the other groups. Starting with initial assumptions and
engineering approximations, the discipline data would change as
detailed analyses were completed and experimental data became available.
Many iterations through the disciplines were needed before a configura-
tion analysis could be completed. Complete system optimization was
nearly impossible because a single iteration could take days.

In order to reduce the design cycle time, several aircraft com-
panies developed large synthesis programs for the design and analysis of

Space Shuttle eonrigurations.?'2

These programs closely coupled the
engineering disciplines in order to conduct parametric and optimization
studies, Although the design process was automated with these programs,
they had limited success. Each program was developed for a single Space
Shuttle configuration, which made them difficult to apply to the ever

changing design requirements (such as final orbital conditions,

stability, and structural/material selection) and range of Shuttle

2

concepts (such as two-stage fully reuseable, stage and a half partially
reuseable, and the solid/external cryogenic tank/orbiter hybrid that was
chosen). The programs lacked flexibility because of fixed design logic,
restrictive data communications between subroutines, and lack of
generality in the analysls routines. Changing one analysis routine
usually meant that more detailed data requirements from the other dis-
ciplines were needed. Because of the constantly changing requirements
and the data dependency between the analysis routines, the design syn-
thesis programs were in a constant state of revision. Interactive
operating systems were not available at this time, thus programs were
executed by cards in a batch mode. The designers and analysts could not
interact with the design process until a final design was established by
the computer. This final problem restricted one of the most important
engineering design contributions--creativity.

In the early 1970's, the Optimal Design INtegration (ODIN)

system3'“ was developed to integrate into one system t::.he independent
programs of each specialist. The ODIN system was executed in a batch
mode. It included a data management system to communicate information
between the various engineering programs and an executive control system
for creating a design cycle which consisted of sequencing through the
individual analysis programs, looping through a sequence of programs
based on design constraints, jumping from one sequence to another after
a design constraint was satisfied, and optimizing selected design
parameters. Conceptually, this system provided a sound foundation for
computer-aided design because the specialists could use their programs

in which they had confidence, and the design system could adapt to any

3
configuration or design problem. In practice the ODIN system had two
major flaws. First, the development of a design was very difficult
because the design cycle could rarely be defined until after several
design iterations were completed. In a batch (non-interactive) system,
determining the execution sequence of analysis to solve a design problem
sometimes took weeks. Again, in a batch process, a deck of geometry
cards would be submitted and several hours later a hardcopy of the plot
of the geopetry would be returned, often with mistakes. These geometry
iterations alone could take days.

With the advent of minicomputers and low-cost graphiecs equipment,

the Aerospace Vehicle Interactive Design (AVID) system was developed in

?976.5'6 This system was very similar to the ODIN system in concept.
The data management system was similar but was extended to be used in an
interactive computing environment for real time data viewing and edit-
ing, and a library was created so that data could be entered into or
extracted directly from the database by the analysls programs. An
interactive geometry system was developed that reduced geometry gener-
ation time from days to hours. Finally, a new executive program was
developed to allow the interactive execution of analysis programs. The
design cycle is guided by real-time results of the analysis programs.
Once a design cycle becomes repetitive, sequences can be developed for
batch processing.

Based on the success of the AVID system, a dedicated computer was
purchased, and a number of general analysis programs have been developed
or acquired for geometry, aerodynamics, heating, flight control, opera-

tions, and costs. Major problems still exist, however, because the

Yy
number of data elements to be transferred between the analysis programs
has increased from several thousand to several million. The number of
interactive terminals and distributed computers has also increased (a
terminal and/or computer on every desk is now typical), allowing each
individual specialist to participate in the design process
simultaneously.

The purpose of this dissertation is to develop a methodology to
integrate data, programs, and engineering specialists together in the
present computer environment. First, engineering design is discussed.
An historical perspective of past and current design integration ap-
proaches and data management systems is presented. Then a system
architecture for program/program user integration is developed along
with a data management system to support this architecture. The ap-
proach is given in detail and lessons learned from the different phases

of implementation will be summarized.

ENGINEERING DESIGN AND COMPUTER AUTOMATION

The engineering design process is illustrated in Figure 1, Working
with a set of predefined requirements, an experienced designer develops
a configuration that may meet these requirements. This trial configura-
tion 1_s then analyzed by the appropriate engineering disciplines.
Performance results (size, weight, cost, etc.) subject to constraints
arising from the analysis procedure (maximum loads, material selection,
structural arrangement, propulsion selection, etc.) are compared to the
initial requirements. If the configuration does not meet the require-
ments, the characteristics of the configuration are modified in a
heuristic way in the early design stages because the consequences of the

7 As the configuration is iterated through the

changes are not known.
analysis, comparison, and reconfiguration cycle, a general knowledge
about the trades of performance and constraints is gained. Through this
knowledge, the final configuration can be defined and may be optimized.
For practical design, where only small changes to a configuration are
required, the design process is well defined and a specific handbook
method may be applied; but for revolutionary design (space programs and

new projects), the design process, analysis tools, and configuration

must evolve together because the initial configuration may be drasti-

rnally different from the final coni’igur*at:.ion.8

In addition to the lteration‘ cycle for the configuration, results
must be iterated by the engineering specialists to complete the analysis
of one configuration. As shown in Figure 2, a simplified airplane
design cycle, the aerodynamics engineer needs geometry, which is

predefined, and the center-of-gravity location, which is not initially

6
known. A guess of the cg location is used until the weights engineer
computes the c¢g location. The performance engineer needs the
aerodynamic results, propulsion specifications, and the weight of the
vehicle. The welights engineer needs the performance results and propul-
sion specifications for loads analysis. It is obvious that the design
data must be iterated and passed from one engineer to another before
analysis results are completed for just one configuration,

There arebasically three levels of design; conceptual, preliminary,
and detailed.g-?? At the detailed design level, each subsystem and part

of the configuration must be thoroughly analyzed and tested. Results

from this phase of the design are part drawings used in the manufactur-

ing process.9 This level of design requires more resources than the
other two because part design and defiﬁition are labor intensive and
analysis results are verified with tests of prototype models.

Because of the investment required at the detailed level of design,
the majority of research and development in design automation has been
directed towards this level. The term computer-aided design (CAD) in
the current literature does not address engineering discipline integra-
tion and configuration iteration automation., Computer~aided design is
associated with electronic drafting systems for the development of

2-dimensional and 3-dimensiona1'drawings for mechanical, architectural,

structural, and electronic applications.?2 These system are tied to the
manufacturing process through the generation of tapes (files) for
numerically controlled machines that automatically mill the defined
parts. This process of combining computer-aided design with

computer-aided manufacturing is called CAD/CAM.

7

The first two levels of design are used to define and evaluate the
configuration for the final design level. In the first level of design,
the conceptual level, the configuration needs and requirements are
evaluated, a market analysis is conducted, and a potential set of solu-
tions are defined. Rough order of magnitude engineering analyses are
used to determine if the solutions can be physically obtained. In the
second level of design, preliminary design, sophisticated engineering
techniques are used to reduce inaccuracies to determine the best con-

figuration for the final design cycle.?o

Currently automating the conceptual and preliminary levels of
‘design with computerized systems does not appear to be very attractive
as compared to the resource intensive detailed design level that ul-

timately interfaces with the manufacturing process.?? Engineering

companies do not sell configuration designs but sell the products
resulting from the detailed design process. On the other hand, it is at
the lower levels of design where the products are first developed. At
these lower levels, the products can be easily enhanced and optimized
while the cost of change is relatively low. These optimized designs may
. result in reducing re-engineering tasks at the detailed level and in
development of a more competitive product. If the analysis tools are
not readily available through automation, there is little chance of
making radical changes to an existing design or replacing the design
with a unique idea because substantial time and cost has already been
invested. On the other hand, if the analysis tools are readily acces-
sible that can reduce the time and cost involved in verifying a new
concept, innovation can be encouraged at these lower levels , Because

of these potential benefits, techniques are now being developed for

8
combining "applications software, graphics hardware, and data management
capabilities” into integrated computer-aided engineering (CAE)

systems.?2

PAST APPROACHES TO COMPUTER-AIDED ENGINEERING

Many previous approaches for engineering discipline integration for
analysis and design have had three distinct components. The first
component is that of geometry definition and presentation since geometry
permeates almost every engineering model. Data management, the second
component, communicates data between the engineers and their analysis
programs. The final component is executive management which controls

and directs the design process and allocates system resources,.

Geometry

Because there are a number of companies involved in the development
and marketing of geometry (CAD/CAM) systems for all the various levels
of design and applications, it will be assumed that geometry is commer-
cially available to perform any required task. For example, there {is
ANVIL 4000 mechanical drafting and manufacture interface, PATRAN-G for
finite element modelling for the large structural analysis programs, and
the Configuration Development System (CDS) for conceptual studies of

aircraft, to name just a few used at Langley Research Center.

Data Communication and Program Coupling

The data communication and analysis program coupling in past and
current computer-~aided multidisciplinary systems can be generalized
as: closed-coupled integration, close-coupled interfacing, loose-coupled

integration, and loose-coupled interfacing.

10

Single programs that perform design synthesis?'z’?S-!s

are clas-
sified as being close-coupled integration systems (Fig. 3a). Close-
coupling means that the path through the disciplines to resolve
parameter iteration, design constraints, and/or optimization is usually
fixed. In these single programs, the executive consists of the internal
program logic that calls the various subroutine modules for engineering
analysis. The data transfer is usually tightly integrated through the
use of common global blocks and data files. The main advantages of
these systems are: a very fast execution speed that allows parametric
studies and optimization, tightly controlled data management so no data
interpretation errors occur between the various modules, and small
enough size for a small group of engineeis (1 to 5) to use. The disad-
vantages of close-coupled integration derive from the difficulties of
integrating all the analysis pieces into one computer program and also
from the difficulties in adapting to evolving requirements because the
analysis techniques are deeply embedded in the program and data changes
often afrect much of the program., Many of the systems are developed to
perform complete system synthesis; thus it is difficult to analyze a

vehicle for a single discipline or conduct just a partial study. The

size'®

system tried to eliminate these problems by working with a
library of analysis modules that can be precompiled and managed by a
customized executive system. Each engineering group develops its own
analysis modules to support this system. A special purpose data manage-
ment system was developed to communicate data between the analysis
modules, The SIZE system had a good architecture for developing an

automated design system for conceptual studies but only a limited number

of design parameters could be used.

1"

Close~coupled interfacing leads to the coupling of independent
analysis programs that were used by the individual specialists (Fig.
3b). With interfacing, the data coupling is external to the analysis
programa. The interfacing of two programs is accomplished by having the
first program write the input file for the second program, If this
input file meets all requirements of the program, then the second
program does not have to be altered except to create an input file for
the next program. By repeating this process between the various
programs, a fixed path through the programs can be established for
analysis and design. This interfacing technique is relatively. eésy to

implement and has been successful in coupling programs.”’?8

As programs are linked into these close-coupled systems, a network
of programs evolves with fixed execution paths. Therefore, a disad-
vantage to close=-coupled interfacing is that the design cycle is
restricted to the fixed path of the linked programs. The path may be
appropriate for the first intended application (e.g., an airplane), but
may be wrong for another application (e.g., a space shuttle). Also, as
the network of analysis programs grows, it becomes more and more dif-
ficult to couple new programs into the system. A new program may
require input from several programs that are not directly "linked". A
separate program (called an intermediary program) must be written to
read the output from several programs and create an input file for this
new analysis program,

Because of the problem of coupling new programs with de~centralized
information and because the design cycle is predefined by the program
network, many of the current systems have centralized the data, which

leads to loosely coupled programs. Loose-coupled systems allow programs

12
to be individually executed and execution paths through the programs to
be defined externally.

Loose-coupled integration is the technique employed by most busi-
ness applications today (Fig. 3c¢). A central database management system
is used for data communication to all the separate programs. The
programs are developed from their inception to communicate directly with
the database management system for both input and output. This approach
is the one being developed by the Independent Programs for Aerospace '

vehicle Design (IPAD) study.!9

The main advantage of loose-coupled
integration is that the programs (analysis techniques) can be developed
1ndependen£ly and can later be coupled together to form a complete CAD
system. Each program is independent of the others as long as the re-
quired input data is resident in the central database, The main
disadvantage is the complexity of integrating existing programs with the
database management system. For a program that has been developed
without any considerations for future database integration and has a
large data input with many analysis optlions, the integration task is
difficult for anyone but the program developer. The difficulty arises
because the internal program variables that must be integrated with the
database are almost never documented and must be deduced by comparing
the input procedure with the computer code, For programs that have been
poorly structured, this variable identification can be a formidable
task. For a company-wide CAD system where data standards can be en-
forced and program development 1s dedicated to this CAD system, it can
be advantageous to integrate the programs. However, because of the
small budgets usually associated with conceptual and preliminary CAD

systems, the software overhead of integration could be prohibitive.

13

To eliminate the integration software overiiead, analysis programé

can be interfaced to a central database for data commuﬁication
(loose~coupled interfacing). Instead of communicating directly with the
database for input, a pre-processor program is used to retrieve data,
transform the data, and format the data into an input file for the
analysis program (Fig. 3d). The advantage of interfacing with a pre-
processor program is that it requires no knowledge of the internal
coding of the analysis program. Only the program input requirements are
needed, and these are usually well documented., Because no modifications
are made to the input and analysis sections of the program, there is no
risk of developing "bugs" in a production program, Finally, if problems
with the coupled program do occur, the input and analyses program can be
examined and executed independently by the specialist responsible for
the program. The disadvantages of interfacing are that a pre-processor
program must be written for each analysis program and additional com-
puter overhead (time) is required for writing an input file. Program
output data to be communicated to other programs can be handled in two
ways. First, an output subroutine can be added to the analysis program
to generate a file of data. This file 1ls read by a post-processor
program which stores the data in the central database. The second
method involves integrating the desired output results directly with the
central database in the analysis program. The second approach involves
just as much work as the first, but the post-processor program develop-
ment is eliminated. Loose-coupled interfacing has been used by several

design systems.s’zo-zu

14

Executive Management/User Interface

The third major component of past engineering synthesis systems is
the tool to manage program execution and incorporate the engineering
specialist directly into the computer-aided environment.

With single program synthesis systems, executive management is
accomplished mostly through the main routine in a program that loops
through the analysis during iterative design cycles, jumps from one
iteration to another as design constraints are satisfied, and continues

the design process based on directions given by optimization

algorithms.1-3'?3-?s In most of these synthesis systems, the only
control the user has over the design cycle consists of options to select
various design cycles that have been preprogramed into the system. A
typical example in these systems is vehicle sizing in which the vehicle
can be sized to carry a specified payload on a given mission, the
payload weight can be calculated for a fixed vehicle size to meet a
specified mission, or the mission can be calculated for a fixed vehicle
and payload size. It is obvious that the synthesis programs are not
very general from the number of different design systems for varlous
classes of vehicles which can be found in the literaﬁure.

In several design systems that utilized independent computer
programs for engineering analysis, the executive consists of a design

control language that is used to couple the programs in a specified

sequence.3’?6 Looping, jumping, and optimization are available in many
of these systems, and are similar to the preprogramed design logic in
the single program synthesis programs. This trend of specifying the
complete design process with optimization in which the computer solves

the design problem was precipated by the batch operating systems that

15
were available at this time. User interaction was very time consuming
because results were available in printed form only (graphical form was
available in the next day delivery service), and input had to be punched
on cards.

With the advent of minicomputers, interactive operating systems,
and low-cost graphics equipment, the trend has shifted from monolithic
and highly automated executive systems to the engineer-in-the-design-

5:19-23,25 14 matn objective of the user

loop user 1nterf§ce systems.
interface is to provide an environment in which the engineer can execute
programs in response to the assimilation of real-time engineering
analysis results. If the design problem has to be solved by many itera-
tive cycles, the user interface provides an environment similar to that
of the batch synthesis systems. With the user interface, the design
cycle can be interactively established and then programmed. This ap-
proach saves time and reduces boredom by eliminating repetitive tasks.
The second objective of the user interface is to provided a direct path
into the design data for review and manipulation. Thus the user inter-

face should provide total control of all the resources of the design

system - analysis programs and data.

16

PERSPECTIVE OF CURRENT DATABASE MANAGEMENT SYSTEMS

A database management system controls the structure of and access
to a central repository of data. With a central database, redundancy
(duplicate data copies) can be reduced, standards in the representation
of data can be enforced, security restrictions can be applied, and data

can be shar'ed.26 One of the major objectives of any database management

system is to provide independence between data and the application
programs. Data independence can be defined as the isolation of data
from the programs so that changes in one do not affect the other. Thus,
software maintenance of application programs is minimized when changes
or additions are made to the system.

To obtain this data independence, the national standard for the

development of database management systems recommends a three layer

(schema) approach (Fig. 14).27 The internal schema defines the access
structures for the data. Various structures are provided so that the
data can be stored or accessed easily through sorting, stacking, or
queueing or accessed quickly by inversion or hashing. The conceptual
schema defines the overall structure (defined later) of the data in the
central database. Finally, the external schema is a subset (and pos-
sible reorganization) of the conceptual schema and defines the data to
be accessed by each application program.

The structure of the data in the database is the main difference
between current database systems. The three data structures are rela-
tional, network, and hierarchical.

The relational model is illustrated in Figure 5. This model is

defined by tables called relations. In the figure, the relations are:

17
VEHICLE, which lists current concepts, SUBSYSTEMS that are typical for
any vehicle development, and PACKAGING, which positions the parts in
each vehicle. The columns of data are called attributes, and each row
of data is called a tuple. The advantages of a relational database are

that the structure is very simple to define (tables) and that a natural

query language exists based on set theory.28 For example, to retrieve
all parts for the SHUTTLE, the following commands are used:

JOIN VEHICLE AND PACKAGING OVER V# GIVING V_AND_P

SELECT S# FROM V_AND_P WHERE VNAME EQ SHUTTLE

GIVING SH_V_AND_P

JOIN SH_V_AND_P AND PARTS OVER S# GIVING SH_PARTS
where V_AND_P, SH_V_AND_P, and SH_PARTS are temporary relations. The
JOIN command combines the relations VEHICLE and PACKAGING into one
relation, V_AND_P, where the vehicle numbers, V#; matech. The SELECT
command builds another relation that contains only the SHUTTLE vehicle.
The final JOIN command satisfies the query. The disadvantages of using
the relational data structure are that some natural data structures are
not easily defined in relational form and the systems are traditionally
slow because the system, not the user, structures the data internally.

The second data structure, network structure, must be defined both

logically and internally. The network structure can model relations
(trees) and of course networks as shown .in Figure 6. The tables are
called records, the columns are called fields, and the physical connec-
tions between the records are called sets., The advantages to the
network structure are the flexibility in data structure and the ability
to customize the internal structure. The disadvantages are the complex

language for constructing the structure and the procedural data language

18
which is used to "walk" through the database record by record using the
access paths shown in Figure 6. Most network systems do nét support an
interactive query language.

The final structure is the hierarchical structure (Fig. 7). This
structure was one of the first structures to be used by a database
management system. The tables are called records, the columns are
called fields, and linkages between records are called segments.
Because the structure is simple, both interactive and program interfaces
are supported. The problems with the hierarchical structure is that
only tree structures can be modelled and data redundancy (duplicate
record occurrences) can be a problem. (E.g., SEAT in Figure 7 is
duplicated.)

The "right" type of data structure was a major topic of controversy
between the developers of these systemg in the late 1970's. Today, most
systems claim to support some or all the capabilities of all the data
structures. Research is being conducted that combines the best features

of the three models into a unified data structure and data manipulation

(query) 1anguage.26

There are a number of other qualities about data management systems
other than data structures. There are data security techniques that
protect the data against both intrusion by non-authorized users and
intentional destruction. Security mechanisms range from passwords to
physical devices such as voice or fingerprint validators. There are
integrity mechanisms to ensure that the database is accurate at all
times. It is impossible to ensure that all data entered into the
database is completely correct, but it is possible to check the

plausibility of the data. Integrity mechanisms include checking the

19
data between upper and lower bounds or comparing with a set of possible
values. Another feature is a backup and recovery system for re-
establishing the database after a hardware or software fallure. This
system is very important for banking, airline reservations, or other
business applications where each transaction is critical. A data die-
tionary is sometimes supported that provides the system administrator
with a description of each entity in the database and a cross-reference
guide between the data and application programs, which aids in review-
ing, modifying, or adding data or programs. Finally, there are
mechanisms to share the database simultaneously among all users (called
concurrency) because this is the main purpose of most central database
systems.

If the main purpose for database management systems is to integrate
independent computer programs through a central database and provide
data independence and an array of data structures and utilities, why is
there little application of these commercial systems to an engineering
environment? The main reason that database management systems have not
been used in engineering environments is because these systems have been
developed exclusively for business applications. Several studies have
categorized the differences between engineering and business database

applications.2’ 33

The first difference is the programming language. Engineering
applications are written in FORTRAN which has very limited support for
data structures. Business applications are written mostly in COBOL and
PL/1. The network structure discussed previously is based on the

CODASYL DB’I‘GZ6 standard which i{s an extension to the COBOL language.

Interfacing these systems to FORTRAN programs is either very awkward or

20
not supported. Also, because business programmers use mostly character
or decimal data, engineering data types such as integer, real, and
complex are usually not supported.

The typical application for engineering is for integrating large
programs for analysis and design. Large groups of localized data are
accessed, modified, and then replaced with moderate frequency.
Geometric data is an example of data that is retrieved, manipulated, and
then replaced. A typical business application (banking, airline reser-
vation, inventory, etc.) involves integrating small programs where
extremely small groups of data are consistently being updated, but the
database remains constant in size. For example, in a banking applica-
tion many updates to accounts will be made daily, but only a relatively
small number of accounts will be added or deleted.

Database management systems were developed for business data
manipulation. When data Is being updated, the database system locks
out other users to the data until the integrity of the data is checked
and data replaced. For business applications, there is no problem with
these quick transactions. For engineering applications, the transac-
tions of large data groups can severely degrade multi-user performance
because of the long lockout times. If a data integrity error occurs,
the system restores the database to its original form and cancels the
transaction request. To perform this rollback, the system records the
operations of every transaction. When an integrity check is positive,
the system simply applies the operations in reverse order. For small
transactions, there is usually no problem, but for large transactions,

the overhead can be quite significant.

21
In an engineering environment, localized areas of the database are
used by the various specialists. These areas are retrieved as "work
copies™., These coples are modified after much analysis and then
released back into the database. Thus, only the last saved copy needs
to be restored if an integrity error occurs. These work copies have
several purposes: 1) to modify an éxisting data set for revisions, 2) to
serve as a guide in creating a new data area, and 3) to move data be-
tween public and private areas. Because the engineering update activity
is characterized by operations on a localized data set, many of the
utilities used for concurrency are not needed until a data set is to be
placed back into the central database.
There are two approaches on how to support the engineering data
activity. The first 1s to provide all the features of a database
management system plus the features applicable to the engineering

environment.?9

The second is to support local databases for the en-
gineers and provide a database merging utility to construct a central
database from local databases of completed analyses.

The first approach has been studied for more than 10 years at a
cost of more than 15 million dollars. To provide data security, multi-
user concurrent access, data integrity, backup and recovery, the
database management system became very large and computational overhead
precluded an interactive design environment. The architecture was
redesigned around two separate data management systems. The large
multi-featured system was used to handle company wide transactions, and

a relatively small system was used for the actual engineering design

process.,

22

In this paper; the approach of utilizing a single high performance

data management system to couple analysis programs into a design system
to support multi-user projects is explored. An overall computer-aided
engineering system architecture is designed, tools to support program
coupling and user interface are defined, and a data management system to

manage the complete system of programs, data, and users is developed.

23

PRESENT COMPUTER-AIDED ENGINEERING SYSTEM ARCHITECTURE

The present system architecture was developed from experience in
developing a conceptual design system, experience in using other sys-
tems, and past experiences of previous computer-aided engineering (CAE)
systems that have been reported in the open literature. Figure 8 il-
lustrates the architecture of a single-user CAE (computer-aided
engineering) system. This single-user system is provided for ex-
planatory purboses and will be expanded to support a multi-user

environment.

Single-User System

User Interface

The user interface is used to provide an interactive environment
between the user and the CAE system. The user interface consists of a
communication language that allows all the capabilities of the system to
be accessed by the~user. The command language, interactive system
presentation to the user, execution error checking and system recovery
and multi-user capabilities for the present CAE system have been defined
and developed by Dr. James Schwing»of 0l1d Dominion University and Donald

MeMillan, his research assist:ant.25

Program Library

The program library consists of all the programs that have been

coupled to the system. For each program, there exists the FORTRAN

24
sourée file, the executable run file, appropriate graphics and math
libraries, and the procedure for créating the executable run file.

The purpose of the program catalog is similar to that of the card
catalog in a typical library - to thoroughly document all available
resources. The program catalog consists of the following:

1) program name

2) version number

3) date last modified

4) description

5) keywords

6) source file name

7) executable run file name
8) library names

9) procedure name for building the run file
10) description
11) custodian's name

An example of the program catalog is given in Figure 9.

Procedure Library

The technique used for program execution is with procedure (or
command) files that are available on most modern interactive operating
systems. These files consist of a list of operating system commands
that are executed in sequence. The system commands can consist of any
operating system command such as file handling and program compilation,
loading, and execution. These procedure files can usually be processed
either interactively or in a batch mode. The user interface uses this

facility extensively for interfacing with the operating system.

25

Examples of the procedure files in the library are presented in
Figure 10. An entry exists for-each system command and consists of the
following:

1) procedure name

2) system command number

3) system command

4) system command description
In the command line, the command to execute a program on the PRIME
computer 1is SEG followed by the program name and the input file name if
needed. The input file in the procedure files is the template name as
described in the data communications section.

Associated with the procedure files is a procedure catalog to
identify each procedure. An example of the procedure catalog is
presented in Figure 11, The procedure library consists of the following:

1) procedure name
2) description

3) date created

4) custodian's name

For each program, there may be more than one procedure for execu-
tion since a program can take on various characteristics based upon the
input provided. For example, a generallzed trajectory program can be
used to simulate vehicle takeoff, vehicle mission maneuvers, and
landing. Thus a different procedure could be used for each of these

cases that specifies a different input data stream.

26

Configuration Database Library

A configuration database 1s the repository for all the data that is
used or created by the engineering analysis programs that have been
coupled to the system. The database can consist of mission requirements
data, geometry definition data, input options and default input values
for analysis programs, results generated by the analysis programs, and a
wide variety of miscellaneous data. This data can take the form of
scalars, arrays, tables, and sequential files in various data types,
e.g., integer, real, and character.

The initial configuration database is called the golden configura-
tion database. It consists of an example of input and output data for
each of the analysis programs. To use the CAE system, a copy of this
golden database is first made and modifications are made to this
database to analyze existing configurations or design new
configurations. With the concept of new and old configuration
databases, checks can be made on the input and output data of analysis
programs by comparing the two databases,

Associated with the configuration databases is a configuration
database catalog that i3 used for identification and database recall.
An example of the catalog is presented in Figure 12. The catalog con-
sists of the following:

1) configuration database name

2) origin configuration database name (SYSTEM i{s the golden
database)

3) date copied
4) date last modified
5) description

6) custodian's name

27

Data Dictionary

Just as important as the configuration database is a description of
each of the data elements in the database. This information is stored
in the the data dictionary. The data dictionary facility in current
database management systems is used to store the schemas (data structure
definitions) and cross-reference information that shows the data flow
through the programs. The data dictionary is invaluable for large
systems when changes are made to the application programs or when new

programs are added to the database system.26

In this CAE system, not only is the data dictionary is not only
used to visualize the data flow through the system, it also has an
expanded role in program and interactive data communications. A

detalled description of the data dictionary will be presented later.

Template Library

Templates are windows into the configuration databases. They are
used to define the data in the database that is extracted for analysis
program input or replaced by results generated by an analysis program.
These same templates are used to define the database input and output
data for review and manipulation, Templates can also be used to gener-
ate data reports as the design cycle progresses. The template consists
of a template catalog and the templates. Templates will be presented in
greater detail later because, like the data dictionary, they are used

in the database communications.

28

Activity Log

When a design activity is completed for the day, or temporarily
suspended, the activity log is used to record comments about the ac-
tivity to serve as a reminder for the next design session (a mus;
feature for aging technologists). It can also bhe used to restart a
previous design activity. The activity log consists of the following:

1) user's id

2) session comments

3) configuration database name
4) date and time

An example of a log is presented in Figure 13.

Multi-User CAE System

By comparing Figure 14 with Figure 8, it can be seen that the
multi-user CAE system is very similar to the single~user system. The
main difference is that in a multi-user system, a work environment
containing local copies of configuration databases, programs, proce-
dures, and templates is created for each user. The activity log is
moved to the user work environment for personal use and a catalog is
added to the global database to identify the various users of the
system,

With local procedures and templates, the standard global procedures
and templates provided by the system administrator can be customized to
the user's personal tastes.‘ For example, procedures for the execution
of single analysis program can be combined to form a personal design
sequence of program executions to solve a given iterative problem.

Also, a template that identifies many input parameters for a program can

29
be culled to only a few pertinent parameters which reduces interactive
data processing time and errors. These personalized features can be
used to increase productivity in an experienced user and greatly
simplify a system for the novice user.

To maintain strict standards and provide a fixed design environ-
ment, only the system administrator can modify the elements of the
global database. Because changes in the global database may have an
impact on the user databases, the system administrator may have to
modify local databases as well.

With this architecture, all the users are isolated from each other.
Each user can make changes to the configuration database without affect-
ing the other users. Once a specialist is satisfied with his results,
the configuration database can be released to the other specialists or
upon approval of the system administrator it can be stored in the global
database.

This isolated approach seems to be a better approach than providing
concurrent access to a single database. In the concurrent approach, a
specialist can change a value to an input parameter. Before he has a
chance to run his analysis, a second speclalist could change the value
again. Thus, the results would not be dependent on his assumed input
parameter. In an even worse scenario, the input parameter could be
changed by another specialist after the results were computed. In this
case the results would not even be dependent on the current parameter
value. This problem of data dependency will be discussed later,

For this isolated approach to work, a database compare feature is

needed to identify differences between configuration databases. On a

30
parﬁicularvproject, each speclalist may begin with the same configura-
tion database. If two speclialists need to communicate their results,
the database compare facility would indicate all differences that must
be scrutinized to determine if there is any conflicting data between the
two configuration databases. A simple example is that one specialist
may have changed the geometry. For this case, a decision on the correct
geometry would have to be made by either the specialists or the project
leader.

This database could also be used by the system administrator to
compare the databases of all the speclalists working on the same project
to determine project progress and identify any potential major
conflicts. |

In order to release a configuration database that is representative
of all the analyses performed by the various disciplines, the
specialists would have to discuss each of the database conflicts and
agree on a compromise database. 1In this case, thé data may not be
"correct" because the results of each specialist may depend on the
results from the other specialists, which may have been changed in the
compromise database construction. In order to produce a "correct”
database, the database may have to be passed from one specilalist to
another until all conflicts are satisfied. The term "correct" may mean
a converged solution or simply a database acceptable to each of the
specialists. The problem of obtaining a converged solution is a major
one in any multidisciplinary project where data must be communicated
between the specialists. This architecture was constructed to reduce

data communication time and errors in interpreting the communicated data

31
through the electronic configuration database and to warn about possible

data conflicts. Solution convergence is an area of future research.

Architectﬁre Discussion

The system architecture was designed to provide management,
visibility, flexibility, and performance. As discussed in the architec-
ture description, there is a catalog that locates, describes, and
provides a point of contact for every active entity in the system (data,
programs, and users). There is as much meta data (data describing data)
as there is actual configuration data.

This meta data makes the system visible to the user. The work
activity log guldes the design process by providing past procedures that
solved similar problems. The program and procedure catalogs can aid in
the selection and use of programs to generate needed data. The global
' and local databases provide a list of all data generated by the users
for that project. Finally, the data dictionary reduces mistakes of
interpreting and applying data because a detailed description including
the physical units is provided.

By using independent computer programs and a central database
system for data communications, there i1s flexibility in creating a
design environment to model engineering problems. The programs can be
executed in any order‘to satisfy design requirements or design con-
straints that arise during the design cycle. Flexibility is also
provided by the addition of new programs or data. Data can be added
with absolutely no effect on the system because the data management

system provides data independence,

32

As demonstrated in several attempts to use a commercial business
database system in an engineering environment, the system response was
slow, the definition of the database was difficult, and trying to use

29,30 The present system was

unsupported data types was impossible.
designed for maximum performance with multiple single-user systems with
an umbrella management system, single purpose databases (a separate
database for each project/activity combination), and a data management
system designed especially for this system. The localized database
system eliminates concurrency checking; thus a small high speed data
management system can be used. A single purpose database minimizes
database size which results in reduced search times through the database
and less disk space because data inversions are not needed to reduce
search time of individual user data sets.

The following section is a discussion of the development of a data

management system for this CAE system.

33

PRESENT CAE SYSTEM DATA MANAGEMENT

A relational information system (ARIS) was developed specifically
for the present CAE system. As discussed earlier (see PERSPECTIVE OF
CURRENT DATABASE MANAGEMENT SYSTEMS), many of the current database
management systems have adopted one of three data models - relational,
network, or hierarchical. The relational model was selected for this
study because its data structure is easy to understand by engineers
(tabular form), there is a natural query language for interactive
processing, the model could be enhanced to support any FORTRAN data
structure, and its capabilities were a good match for the present
system, This relational system was developed because there were no
commerclal systems available when the development started.
Developmental relational systems were available but these systems were
used mainly for studies of query optimization and data structures and

34-36 Because there was an opportunity to enhance

not for applications.
the relational model for engineering and distributive database applica-
tions, a relational information system called ARIS was developed,

A detalled description of ARIS is given in the appendix. The

following discussion is devoted to enhancements to and applications of

the relational model to the present CAE system.

Data Entities

Data entities in the relational model are called attributes and can

be defined as the columns of data in the relation (2-dimensional table).

34
Because the FORTRAN language is the main language for engineering com-
putations, the data types and structures of attributes were enhanced to
conform to the FORTRAN language standards.

Any FORTRAN data type can be stored and retrieved in an ARIS
database. Interactively, only real, integer and character data types are
printed (doublé precision, complex, and logical have not been
implemented). New to relational systems, FORTRAN data arrays have been
implemented, and up to 3~-dimensional arrays can be declared.

A concept unique to relational databése systems 1s variable type
and dimension attributes, which‘were developed for parameter type rela-
tions (Fig. 15). With this variable type attribute, the type and
dimension are declared at the time when the data is stored in the
database. Thus, scalars and arrays can easily be stored in a relation.

A final data type called file is actually not a data type but a
specification of an attribute. The file data type was created to add
sequential ASCII files (text or source data) to the database by just
providing the file name and not physically storing the data in the
database.

For large text files, the file specification means that the exter-
nal text file can be manipulated by the computer systems editor, thus
eliminating the need to develop special editing features for the
database system. The ARIS can still search for character strings in the
same way it searches character type attributes, and the text flles are
also printed with interactive queries. With this capability, paragraphs
of text can easily be saved, manipulated, and retrieved.

After evaluating the data requirements for the coupling of several

programs, it was determined that in some cases, several large

35
bulk data files were shared between programs. A typical example is
geometry. The geometry system (generation, display, and analysis) has
its own internal structure that no other program uses. There are two
ways to incorporate the geometry file. The data can be placed in a
relation as shown in Figure 16a or in a file with just the file name in
the relation as shown in Figure 16b. This file data type is best qsed
for these large data files because relation retrieval can be slow
compared to just reading a data file because of the database system
overhead. Also, data files that can change drastically in size are best
handled by the operating system of the computer, which can efficiently
allocate and reclaim storage as the file grows and shrinks. The file
data type is handled by the database as a repeating data array, and thus
no special handling techniques are required for retrieving the records
from the data file. To denote that a data file is owned by a database,

the database name is appended to the file name when it is created,

Distributive Databases

As shown in the multi-user CAE system (Fig. 14), there are a number
of independent configuration databases - global and each user's. In
order to distribute the data from one database to another, make copies
of complete databases, or make changes to database structure, several
techniques were developed using and enhancing the relational algebra
language.

In the relational model, a concept of permanent and temporary
relations is used to solve complicated queries. For example, to find

all the data generated by AWW and NHG, the query might take the form

36

SELECT DB_NAME FROM DB_CATALQG
WHERE INITIALS EQ AWW GIVING TEMP1

SELECT DB_NAME FROM DB_CATALOG
WHERE INITIALS EQ NHG GIVING TEMP2

UNION TEMP1 AND TEMP2 GIVING ANSWER

PRINT ANSWER
In the two SELECT commands, the relation DB_NAME is searched, and the
results are stored in separate temporary reiations called TEMP1 and
TEMP2, The union operator combines the two relations to form the third
relation ANSWER, and the final command prints the results.

In ARIS, the permanent database and the temporary database are
treated as one large database with the permanent database searched first
for a relation and then the temporary. By appending an extender to a
relation (.P for permanent and .T for temporary), relations that exist
in both databases can be accessed separately. As an example, to deter-
mine all the customized procedures developed by AWW and PRW, the local
procedure catalogs of these two users can be combined by opening the AWW
database as a permanent database and the PRW database as a temporary
database. The command

UNION PR_CATALOG.P WITH PR_CATALOG.T
satisfies the query. By using this command on every user's database,
all the customized procedures in the system can easily be viewed.

There are four commands that are used in this distributive database
system that use this permanent/temporary facility. The TPCOPY command
makes a copy of the database (from temporary to permanent). A copy can
be used to begin a revision of an existing database or make a copy of

another user's database or a global database.

37

The UNION command adds tuples from one user's relation to another
(duplicate tuples from the temporary are eliminated). Duplication is
determined by a comparison of primary key values. The primary key in
relations is the attribute (or groups of attributes) whose value(s) must
be unique for each tuple. The primary key attribute(s) is declared when
the relation is defined.

The REPLACE command replaces tuples in one relation from another
based on the same primary key value in both relations. This command is
used to update information from another source, while retaining data in
the permanent database that is not common to each relation.

The final command is RCOPY which copiles a relation from one
database to another and erases the old relation. This command updates a
work activity database to be compatible with another work activity.

There are also utilities to perform these activities by unloading
the database, database schema, relation data, or relation schema to an
ASCII file. Thus database definitions and relation data can be communi-
cated across different types of computers by copying the file from one
computer to another and loading the ASCII file into the database system.

This system has been developed for the PRIME and CDC computers.

Data Communication

Data communication between analysis programs, users, and the con-
figuration database is through the data management system ARIS. As
shown in Figure 17, the ARIS system is divided into 3 layers - the host
computer software, the command library, and the interactive interface.

To convert the system to another computer, 95 percent of the code

that needs to be changed is the interface between the system and the

38
host computer software. This conversion consists of the time and date
functions, sorting routines (an internal sorting is provided for rela-
tions with less than 1000 tuples), and disk random access routines. The
other 5 percent is to correct for the differences vetween the FORTRAN 77
compilers.

‘The interactive interface consists of the query parse routine, the
executive routine, and the command structuring routine. The query parse
routine resolves the query into component parts (tokens). The executive
routine determines the desired function from the first token and ex-
ecutes the associated command structuring routine. Finally, the command
structuring routine (one for each command) processes the tokens,extracts
the data needed by the command routine, and then executes that routine.
With the interactive commands, databases can be created, relations can
be defined, and data can be entered, reviewed, changed, and deleted.

The middle layer of the system consists of the command subroutines
that process the relation commands. There exists a subroutine for every
interactive command. Thus, all the relational operations are available
to the application programs that are available interactively through the
command subroutine library.

The library can be incorporated into the engineering computer
programs for complete system integration. The library may also be used
by a pre-processor program that retrieves the data from the database and
formats the data into a file that will be used as input by the analysis
program - data interfacing. As mentioned earlier, the
integration/interfacing question depends on the level of performance

desired and the difficulty in integrating the data interface directly

39
into an analysis program. In either case, the command library can be

used,

Data Communication Utilities

To ease the burden of data communication, integration and interfac-
ing, two utilities have been developed - the reviewer for user/database
interactive communications and the data formatter for program/database
communications. Both the formatter and reviewer use the data template
as a guide for specifying a subset of the configuration database and the

data dictionary for describing each data entity in the database subset.

Template
A template is a list of data entitlies in the configuration database

that is used to specify data to be processed by the reviewer and/or the
formatter,

When the ARIS was developed, it was assumed that all data com-
munications would be through the interactive query language for user
communication and through the subroutine library for program
communication. Because the configuration database became quite large

6 data elements for only the aerodynamics, propulsion, trajectory,

(10
and vehicle sizing analysis programs), editing the entire database was
impractical. Because the analysis programs accessed a subset of the
configuration database for input and output, special editing programs
would have to be developed for each analysis program.

To reduce software overhead and programming mistakes in developing

the data communications with the configuration database, the template

was developed. The data template is very similar in concept to the

40

external schema in sophisticated database management system526 that were
developed for program communication only. In a paper entitled "A
General Purpose Data Entry Program", a system was developed for program

37 .This system was

data communications with a custom data system.
developed to avoid the computational overhead of large database manage-

ment systems and to provide the data structures not supported by the

database systems available to the author of the system.36 Within this
system, a template was developed. The template contains the specifica-
tions for the data to be entered or altered and all the information
needed to guide the data entry task which includes the sequence of data
to be edited and the description of the data. This template has the
essential ingredients to support an interactive input data reviewer - a
definition of the subset of the database to reviewed, a definition and
structure of the reviewing sequence, and a description of each of the
data entities.

The overhead and data structure problems described in Reference 37
do not exist with the present database. ARIS was developed to support
the data structures in the FORTRAN analysis programs, and many of the
extra features in current database management systems were not imple~-
mented to reduce computation overhead.

In the present system, the template only describes the subset of
the database and the sequence in which the data will be processed. The
description of the data entitles is located in the data dictionary
described in the next section.

The data communication utilities support two types of data -

parameter data that consists of scalars and arrays and record data that

4
simulates FORTRAN file structures. Template specifications for
parameter and record data are illustrated in Figure 18 and consist of
the following:

1) template name

2) sequence number (data retrieval/storage
ordering)

3) relation name
4) data type (parameter or record)

5) number of data items (parameters or
attributes)

6) parameter names (or attribute names)

7) number of key attribute values

8) attribute values
where the number of data items specifies the number of parameters
selected from the relation or the number of attributes in the relation
that comprise the fields of the record. The last three items specify
the random access order of processing the relation (FORTRAN file) - the
key field, the number of records to be accessed, and the value of the
key field in each record to be accessed. If the key attribute name is
blank, then the relation is accessed like a sequential FORTRAN file.

Assoclated with the templates is a template catalog. An example of

the catalog is presented in Figure 19, The catalog consists of the
following:

1) template name

2) description

3) input, output, or report generator

4) program name

5) custodian's name

42

6) date last modified
The ‘program name 1is included to inform the user which template can
be used to review the input before the program is executed or review the

output after the program has been executed.

Data Dictionary

The data dictionary provides an inventory of all data entities that
are stored in the configuration database. It contains a list of all
relations in the database, a description of each relation and each
entity in the relation. As mentioned in the previous section, two types
of relations are currently supported by the data communications
utilities: parameter and record. In addition to the data communication
utilities, the ARIS can be used to support any data structure that can
be modelled with the enhanced relational model with the ARIS communica-
tion subroutine library.

Each relation (parameter or record) is described in the data die-~
tionary catalog by: .

1) relation name

2) textual description

3) type (parameter, record, or relation)

4) number of parameters or attributes

5) custodian's name

6) number of programs that can create this data
7) creator program names

8) number of programs that use this data

9) user program names

10) date created

43

Each parameter or data field (attribute) in the record (relation)
for each relation is described by:

j) relation name
2) parameter name or data field (attribute) name
3) textual description
4) physical units (pounds, feet, ete.)
5) data type (real, integer, or character)
6) number of characters if character data type
7) dimension (none, 1, 2, or 3 subscripts)
=1, 1, 1 for scalars
=1, 1, 1 for 1-dimensional arrays
. i, m, 1 for 2-dimensional arrays
= 1 ,m, n for 3~dimensional arrays
Examples of the data dictionary catalog and data dictionary data are
given in Figures 20 and 21.

The creator and user program names are used to generate a cross-
reference listing between data, and programs can be generated. This
list is useful when developing the data communications between new
programs and the system. Also, when a program requests input data from
the database and that data is missing, this cross-reference list can be
used to instruct the engineer where this data can be generated, either
from output created by an analysis program, from an external data file,
or input by hand through the keyboard. Finally, the data dictionary is
used with the interactive data reviewer to identify each data entity

through a description, physical units, and data type.

by
Reviewer
The reviewer 1s the interface between the user and the configura-
tion database. It is used to review and update the data in the database
as specified by the data template.
A typlecal example of a screen produced by the reviewer (Fig. 22)
shows that two versions of the data are presented along with the
description and the physical units of the data. The description aqd
physical units are provided by the data dictionary (Fig. 21).

Parameter reviewer., - Rather than inventing a system that was un

familiar to the users, a line editor format was selected for the para-
meter reviewer that is similar to the text editors that exist on the
host computer system. A typical reviewer screen of information is shown
in Figure 22,
To move from screen to screen, the command
Nn
is used. The value n can be positive or negative. To go to the next
screen, the command N is used. To review two screens from the current
screen, the command N2 is used. To see the last screen a large number
for n is used, and to go to the first screen, a large negative is used.
To compare the differences between two separate databases, the
command
DIFFON
is used. Only the lines in which there is a difference in value between
the present and old values will be displayed. All lines can be dis-~
played by turning off the difference command with the
DIFFOFF

command,

45

To change data, the following commands are used:

*.,p,0 --= change all present values to the old values
2,P,0 -=-=- gchange present value to 0ld value on line 2
4,p,55 --- change present value to 55 on line Y

6,P,'NEW' =--- change present value to 'NEW' on line 6
8,pP,M ~--- modify present value on line 8
With the modify command, the value is displayed and can be modified by

the keyboard by typing below the value. As examples:

124,65E-02 --= displayed on screen
?2 9 3 --=- 9 and 3 keyboard input
129.65E-03 --- resulting change
and T
129.65E-03 --=- displayed on screen
2 HH --- delete characters
129.653 --- resulting change
and o
129.653 --- displayed on screen
2?2 "11< --- insert '11'
11129.653 --- resulting’ change

For character data type, only the first 16 characters are displayed on a
reviewer screen. To view the entire character string, the modify com-
mand is used to display up to 132 characters.

Other commands include:

R --- Redisplay the current screen
Q --=- Quit editing and do not save changes
E -=-- End editing and save changes

A number of other commands have been identified but have not been
implemented., Thesé commands include value arithmetic (multiplication,
division, addition, and subtraction), change values in a range of lines
or elements in a array, and value search. An example of the parameter

revievwer will be presented in the section entitled Sample Problem.

46

Record reviewer. - The record reviewer is very similar to the

parameter réviewer. but the datg ig presented in columns across the
screen (Fig. 23). There is a prdblem in presenting record data because
only 7 columns of data can be presented on a 132 column screen and and 5
columns on a 80 column screen, assuming a 16 field width minimum for
real data. Thus, the reviewer is used much like a typical spreadsheet
program such as Visicale or Lotus 1-2-3.

To display the desired columns of information the following com-

mands are used:

Cn --=- displays the relative columns numbers
from present where:
n = 1, displays the next group of
columns
= -1, displays the previous group
of columns
= 99, displays the last group of
columns
=-99, displays the first group of
columns
D,1,9,2,~,4 --- displays columms 1, 9, 2, 3, and 4

The data editing commands are similar to the parameter editor
commands except the column number(s) must be specified:
*.P,0 --- change all present line and column
values to old
1,P,0,* --- change all present values to old in
' line 1
2,P,0,3 =--- change present value to old value in
line 2/column 3
2,P,3,55 --- change present value to 55 in
line 2/column 3
To display and update character sfrings greater than 16 characters, the

modify command must be used.
The other commands to redisplay the screen, quit, and end are
identical to the parameter commands.

Reviewer uses. - There are many uses for the reviewer, First, the

data dictionary is the template for the entire database, Thus it can be

47
used by the database administrator or an engineer to review the complete
database or compare versions of the database: his personal versions, his
version with other specialists, or his versions with permanent versions
that reflect various stages of a large project. Second, any template
(program input or program output) can be used to review the data and
compare it to previous cases., Finally, summary templates can be con-
structed and used with the reviewer for final reports or management

information that needs to be reviewed interactively.

Formatter

The formatter was originally viewed as a utility that used a
template to specify data to be retrieved from the database and then
automatically create an input file for an analysis program - a general
system pre-processor.

After reviewing the dat; requirements of the various application
programs, the data generated by one analysis program was usually in the
wrong form for input to the next program. In many cases the data must
be converted to different physical units, materialized from existing
data (e.g. gross weight is the sum of component and fuel weights), or
completely restructured like geometry data that is different for almost
every application.

| Because the transformations and conversions of data can be very
complicated, the logic of a computer program is needed. Because of this
complexity, the idea of an automatic formatter for input file creation
-was dropped.
The current formatter is a program that generates FORTRAN code that

can be used by any program to retrieve data from the configuration

u8
as desired. The data template is used to define the data and the
retrieval sequence., The data dictionary is used to specify the data
structure and data type. The formatter uses the template and data
dictionary information to automatically create code for communicating
data between the configuration database and the application progranm,
thus freeing the system administrator from writing the code by hand
using the ARIS subroutine library. Kenny Jones from Computer Sciences
Corporation developed the precompiler program.

Figure 24 shows an example of an input subroutine developed utiliz-
ing the FORTRAN code generated using the template T _EXAMPLE (Fig. 18)
and the data dictionary (Fig. 21). As shown in this subroutine, all the
code to specify the data types and database retrieval 1s generated. The
implementing programmer must integrate this data with the analysis
program. A labeled common statement was used to communicate this
retrieved information in the program. Other techniques could have been
used such as including parameters in the subroutine statement or writ-
ing a file that is read by another subroutine in the analysis program.
Problems can arise when the variable names in the program are

different than the data names in the configuration database. Currently,
the problem is being solved by changing all the pre-compiled variable
names to the program names using the host source editor. A more elegant
approach would be to add the program variable names to the template
specification so the formatter could make this name substitution
automatically. Other problems such as data transformations/conversions
from the configuration database to the application program must be

implemented by the system programmer,

49
The use of the formatter in program interfacing and integration is
shown in Figure 25. For program interfacing, the formatter is used to
create the code for retrieving the configuration data, The pre-
processor program transforms and converts this data (if necessary), and
then creates an input file for the analysis program. The analysis
program reads this input, computes, and creates a results file. The
formatter is also used to create code for the post-processor program to
store data into the configuration database. The post-processor program
reads the results file, tranaforms and converts the data, and stores the
results into the configuration database.
The integrated program coupling is similar to the interfaced cou-
pling, but all the database communications and data
transformations/conversion subroutines are lccated in the application

program,

50

IMPLEMENTATION

As shown in the CAE system architecture (Fig. 14) the majority of
the system consists of data. Thus, a large effort was devoted to the
development of the data management system (ARIS) that supports the data
system - configuration data and meta data.

The global database in the CAE system is implemented as a directory
of files in the host computer. The directory consists of the meta
database which describes the other files in the directory: the con-
figuration databases, the program files, and the library files (Eig.
26). The meta database consists of relations defined for the program
library (Fig. 9), the procedure library (Figs. 10 and 1t), the con-
figuration database catalog (Fig. 12), the data dictionary (Figs. 20 and
21), the template library (Figs. 18 and 19) and the user catalog.

The program files consist of the source file, the executable run
file, and the procedure file that 1s_used to build the executable run
file. The library files consist of the source files of the library used
by the analysis programs that are not supported by the host computer.
system administrator.

The configuration databases are implemented as separated ARIS
databases. They contain all the data that is described by the data
dictionary (Figs 20 and 21).

The following procedure illustrates how a new program is integrated
into the system (also shown schematically in Figure 27). The CAE system
administrato™ must do the following:

1) Define input and output requirements of the program.

2) Check the data dictionary for compatible input and output data
with existing data entities,

51

3) Develop the definitions for any new relations (attributes and/or
records) that are needed.

1) Enter the relation definitions and data entity descriptions into
the data dictionary.

5) Enter program source, executable run file, procedure file, and
library source if needed to the global directory.

6) Enter program description into the program library.

7) Enter execution procedure and description into the procedure
library.

8) Develop input and output templates, and enter the templates and
description into the template library.

At this time the ARIS and formatter are used to do the following:

1) To create a golden database (proven input/output data values for

) program demonstration), compile a configuration database, copy
the golden example into the new database, and place null values
into the newly defined data entities.

2) Enter the golden database into the global directory and update
all previous configuration databases.

3) Precompile input and output code using the formatter.

The system administrator must now complete the following:

1) Complete the development of the input and output routines

" (incorporate the precompiled code into the application program

if necessary).

2) Enter programs and definitions into the program library if pre-
or post-processors were developed.

3) Enter new data values into the golden configuration database
using the reviewer and/or program execution.

4) Execute new program and check results.

The local databases now must be updated with the new changes., The
local databases are implemented similarly to the global databases in
which a directory isdgreated for each user. The user environment con-
sists of a configuration library which consists of copies of the global
configuration databases and a user description of these copies, subsets

of the global templates with a user description, personalized procedures

52
developed by combining global procedures, and a log for design session

comments.,

53

SAMPLE PROBLEM

A relatively trivial problem is presented to demonstrate the many
features of the integration system. The programs used (Fig. 9) are:
1) GEO_DIG - digitize an aircraft shape from an

engineering drawing with an
interactive graphics tablet

2) HABFRMT - convert digitized geometry to
Hypersonic Arbitrary Body (HAB)
geometry format38

3) mace3? - plot HAB format vehicle

compute the HAB geometric
properties: areas, volumes, center-
of-area location, area moments and
products of inertia

4) GEO_PROP

compute weights and center-of-

5) WIS_BAL
gravity location

6) HYPERPRE preprocessor to create an input file

for HYPER

7) HYPER compute hypersonic aerodynamics

The program and data flow are shown in Figure 28. The body and
wing geometry is digitized from an engineering drawing with a graphics
tablet using the program GEO_DIG. The HABFRMT program is then used to
convert the digitized data to HAB format to be used by two standard
programs: IMAGE for plotting the panelled vehicle and GEO_PROP for
computing the geometric characteristics. By applying a unit weight
(pound per square foot) distribution on the surface areas of each of the
components, the total vehicle weight and center-of-gravity location of
the total vehicle can be computed with WIS_BAL. A very simple hyper-

sonic aerodynamics program, HYPER, that uses vehicle geometric

parameters (wing area, leading edge sweep, tralling edge sweep, etc.) is

54
finally used to compute the trim conditions of the vehicle. To create
the input file for HYPER, the preprocessor HYPERPRE is used.

The command to start the system is

AIDES AWW

where AIDES is the present Aerospace Integrated Design and Engineering
System and AWW are the users initials. If the initials are not found in
the users catalog (Fig. 14), then the user information must be eq@ered
into the system.

The current databases and the last log entry are then displayed:

CURRENT ACTIVE DATABASES:

PRESENT = MARTIN2 - MMC1 WITH NEW WING
OLD = MARTIN - MARTIN TASK II SSTO

LAST LOG ENTRY > CCV TECHNOLOGY WEIGHTS - 01/10/84

#% enter return to continue ¥#
The data for the active databases and log is found in the database
catalog (Fig. 12) and the activity log (Fig. 13). The executive menu is

displayed after return is entered:

96 90 36 36 3636 3 36 26 20 36 36 36 36 3 3 06 3 3¢ 3 3 %

* *
* AIDES EXECUTIVE *
* *

36 33 3 3 36 3 3 02 3 36 3 3 I 3 3 K W

E - TO EXECUTE PROCEDURES

E, PROCEDURE nametl [, PROCEDURE name2] ...

L - TO LIST PROCEDURES

L (return) - to list all procedures
L, PROCEDURE name - to list procedure commands

55

U - TO DISPLAY UTILITIES MENU
Q - TO QUIT

>E;GEO_DIG,IMAGE,GEO_PRP,WTS_ﬁAL,HYPER

All the above commands are self explanatory except the utilities
menu. The utilities menu consists of commands for:

1) listing the global and local configuration database catalog,
* procedure catalog, program catalog, or template catalog,

2) making a copy of a configuration database, procedure, or
template,

3) editing the local catalogs, log, procedures, or templates,

4) activating a different configuration database (present or old).

The command E followed by the five procedure names executes all the
procedures in the present system (Fig. 10). First, the vehicle is
digitized using the geometry in Figure 29. The template T _DIG_OUT has
been incorporated into the GEO_DIG program for data communications. The
next procedure command allows the user to review the digitized data (a
simpler example with less data will be presented later). Then the
digitized data is transformed into panel geometry and parameter data by
the HABFRMT program. Thus, with this geometry procedure, geometry can
be manipulated in graphical form in the GEO_DIG program and in digital
form by the reviewer. Sometimes this direct data manipulation is neces-
sary because the digitizer and graphics screen resolution are not
adequate.

The IMAGE procedure displays the panel geometry (Fig. 30).

The WAB procedure computes the geometric properties.

56

In this

procedure, the reviewer is first used to edit the unit weights for each

component:

Fe b3 362 3 % 2 33 2% 3% 3% %% %N

* *
* AIDES *
* *

*REVIEWER®
* . *
?**************

Template = T_UNIT WIS

SCREEN 1
L# | P_VALUE | O_VALUE | DESCRIPTION | UNITS
1 8 65 8.87 WNG COMP WT LB/FT2
2 5.42 5.42 BDY COMP WT LB/FT2
3 6.u42 6.42 TAIL COMP WT LB/FT2
y 4,85 4,55 BFLP COMP WT LB/FT2
EDIT
>1,P,9.65 (change present value on line 1 to 9.65)
>2,P,6.50 (change present value on line 2 to 6.50)
>R : (re-print the screen) .

SCREEN 1
L# | P_VALUE | O_VALUE | DESCRIPTION | UNITS
1 | 965 8.87 WNG COMP WT LB/FT2
2 | 6.50 5.42 BDY COMP WT LB/FT2
3 | 6.42 6.u42 TAIL COMP WT | LB/FT2
y | u4.55 4.55 BFLP COMP WT | LB/FT2
EDIT
>E (save changes and end reviewer session)

After the unit weights are edited, the geometric properties of the

57
vehicle (volumes, areas, center-of-gravity locations, and moments of
inertia) are computed by the GEO_PRP program and the weight properties’
(weight and weight center-of-gravity locations) are computed by the
WTS_.BAL program.

In the hypersonib procedure, HYPER, the reviewer is used to change
the geometric parameter data (Fig. 15), the center-of-gravity location,
and the hypersonic input parameters, Then the preprocessor, HYPERPRE,
creates an input file for the HYPER program called HYPIN. The hyper-
sonic program computes the pitching moment and plots the results as
shown in Figure 31.

With this CAE system, the effects of geometry and weight distribu-

tion on hypersonic trim can be determined.

58

DATA INTERDEPENDENCE

One of the major problems in maintaining the integrity of the
database in a loosely coupled system is data interdependence. The flow
of programs and data in the sample problem is illustrated in Figure 28.
Suppose that the geometry has been generated, the weight properties have
been computed, and the next step 1Is to review the input data to the
HYPER program. Figure 15 shows the geometry parameters. If the wing
area, STOTAL, is changed in the reviewer, then the geometry has changed,
and all data associated with the geometry data (like weight properties)
is now in error because it is based on the previous wing area, This
problem of a data entity affecting one or more other data entities is
called data interdependence.

Business data systems do not have the degree of flexibility in
order of program execution that 1s needed by an engineering system. The
path through the applications in business systems is rigid to maintain
the highest degree of data integrity possible. Mechanisms are available
to check each data entry for correctness and no data can be entered into
the database unless all integrity checks are passed.

In an engineering system, the user should know the upper and lower
bounds on 5 data value, or he should not be using the application
program. The usual business data integrity mechanisms of data com-
parisons against bounds, ranges, or atatistics are not very useful and
mostly represent extra system overhead.

A data interdependence integrity mechanism, on the other hand,
would be very useful in a loosely coupled system as a warning system

against improper data. In the above wing area example, the engineer

59
might have looped through all the programs many times, and learned that
the center-Pf-gravity location did not change significantly as the wing
geometry changed., Thus, a quicker iteration loop would be just to
change the wing parameters with the reviewer and compute the
aerodynamics. Once a wing geometry was found that satisfied the trim
condition, then a full loop through all the programs would be completed
to verify the final results. In this case, the data Iinterdependence
integrity mechanism would be used as a warning system, not a control of
the system.

A cursory attempt was made at defining an integrity mechanism for
this data interdependence problem. The implementation of the integrity
system is based on the flow of data through the programs (Fig. 32). The
integrity mechanism assumes that all the output of a program is a funec-
tion of all the input. Thus, for example, if any data is changed in the
unit weights relation, UNIT WTS, then the data in the weights properties
relation, WI_PROP, would have a warning tag. If the HYPERPRE program is
executed directly after the unit weights relation has been changed with
the reviewer, then a warning would be displayed that the welight
properties may be in error, and this error could be corrected be execut-
ing the WTS_BAL program. The program/relation relationship is
established in the relation catalog (Fig. 20).

In the case where the output of a program is changed, it is assumed
that all the output and the input data that created this output are in
error. For example, if the geometry characterics, GEO_CHAR, are changed
by the reviewer, the relations DIG_OUT and XYZ'S are tagged. Becase the
relation XYZ'S 1s used as input to the program GEO_PRP, then the rela-

tion GEO_PROP is tagged. This tagging process is continued through the

60
data flow of the system. A change in geometry creates a tag on all the
data used by the program that need geometry information or information
based on geometry.

The data dependency graph (Fig. 32) is defined from the data flow
through the programs, which is defined by the creator and the user
program list in the relation catalog (Fig.20). Any time data is updated
in the database by programs or interactively by a user, the data depend-
ency graph is processed at the appropriate position and the affected

relations are tagged.

61

STATUS

After defining the requirements for the system, all effort was
directed towards data management because almost all the functions of the
system depended on this development. The ARIS system (in the appendix)
was developed in two years. It has been used in the development of
several application programs that have been integrated into the system:
geometry, mission modelling, rocket engine database, and an aerodynamic
database,

A prototype system was developed exclusively around the ARIS system

using several orbital transfer vehicle analysis programs.6 The result
of this prototype was that complete database visibility was needed which
resulted in the development of the reviewer. Data input‘into the
database was just as important as output; thus, the capabiliﬁy of
replacing data with no internal database checking was implemented.
Replacements can be made when no more tuples are added to the current
relation and the primary key attributes are not changed. This replace-
ment feature speeds storage by 50 percent and happens approximately 75
percent of the time. Finally, it was found that integrity interdepen-
dency tags with date and time on individual data entries made the system
prohibitively slow with its overhead. The new system being developed
uses a compiled interdependency graph and operates at the relation
level.

The final details of the user interface are close to completion,
Dr. Schwing of 0ld Dominion University is implementing the utility

programs for managing the configuration databases and the interative

62
command structure for the user. A single-user system should be opera-

tional soon.

63

CONCLUSIONS

An approach for coupling independent engineering programs for
design and analysis of aerospace vehicles was developed, It consists of
a loosely coupled network of engineering programs that communicate
through a relational information system, The system architecture con-
sists of the engineering programs, a user interface for managing the
system, a catalog system for maintaining data about the programs, data,
and users, individual work areas for each engineer, and a global
database that is used as a repository of all engineering dat; created
for central use. A relational information system was developed for this
system to communicate engineering data with a FORTRAN language
interface. Finally, two utilities were developed to aid in interac-~
tively editing the database and communicating data to the analysis
programs,

The system architecture provides management of the complete system
through utilities to maintain data about the database, programs, and
users and an executive for executing programs. The system is completely
visible to the user because descriptions of each entity of the system
are provided. The global configuration databases can be reviewed and
copied, and the local configuration databases can be edited.
Flexibility is provided by the data management system because there is
minimum impact on the system when new programs or data are added to the
system, and the programs can be executed in either the batch or interac-
tive mode in any logical order. Finally, data interdependence is a
major problem in loosely coupled systems, and a cursory attempt is made

to define an integrity mechanism for alleviating this problem.

64 -
REFERENCES

1"Space Shuttle Synthesis Program (SSSP), Final Report." General
Dynamics Convair Division Report No. GDC-DBBT0-002, December 1970.

2Gatjrison, J. M. "Development of a Weight/Sizing Synthesis
Computer Program." MecDonnell-Douglas Astronautics Company, MDC-EOQ746,
February 1973.

3Glatt, C. R. and Hague, D. S. "ODIN--Optimal Design Integration
System." NASA CR-2492, February 1975.

“clatt, C. R., Hague, D. S., and Watson, D. A. "Dialog: An
Executive Computer Program for Linking Independent Programs.” NASA CR-
2296, September 1973.

5W1lhite, Alan W. "The Aerospace Vehicle Interactive Design
System." Presented at the 19th Aerospace Sciences Meeting, AIAA Paper
81-0233, January 12-15, 1981.

6w11h1te, Alan W., Johnson, S.C., and Crisp, V. "Integrating
Computer Programs for Engineering Analysis and Design." Presented at
the AIAA 21st Aerospace Sciences Meeting, AIAA Paper 83-0597, January
10-13, 1983.

7Gott, B. "The Scope of Computer-Aided Design," Computer-Aided
Design. Proceedings of the IFIP Working Conference on Principles of
Computer-Aided Design, North Holland Publishing Co., 1973, pp. 1-18.

8Gregory, S. A. "Design and the Design Method," The Design Method.
Plenum Publishing Corp., New York, 1966, pp. 3-10.

9Heldenrels, R. R. "Integrated, Computer-Aided Design of
Aircraft."” Presented at the AGARD Conference on Aircraft Design
Integration and Optimization, CP-147-Vol.1, Oct. 1973.

Oyever, D. D., Anderton, G. L., and Crowell, H. A. "The Design
Process." Presented at the AIAA Aircraft Systems and Technology
Conference, AIAA Paper 78-~1483, August 21-23, 1978.

11wOodson, T. T. Introduction to Engineering. McGraw Hill Book
Company, 1966. '

12Meyer's, Ware. "CAD/CAM: The Need for a Broader Focus," Computer,
Vol. 15, No. 1, January 1982, pp. 105-117.

65

13Oman. B. H. "Vehicle Design Evalution Program (VDEP)." NASA CR-
145070, January 1977.

1uGr'egor'y. T. J. "Performance Trade-~0ffs and Research Problems for
Hypersonic Transportations." AIAA Journal of Aircraft, July-August
1965.

15Roch, A. J. "Missle Integrated Design Analysis Systems (MIDAS)."
Presented at the AIAA 19th Aerospace Sciences Meeting, AIAA Paper 81~
0285, January 12-15, 1981.

] 1GDeBilzan, C. C. and Pickett, H. E. "SIZE: The Aerospace
Corportation's Modular Vehicle Design Program." Presented at the
AIAA/SAE 11th Propulsion Conference, AIAA Paper 75-1275, September 29 -
October 1, 1975.

17Wennagel, G. J., Loshiglan, H. H., and Rosenbaum, J. D.
"RAVES: Rapid Aerospace Vehicle Evaluation System." Presented at the
1975 ASME Winter Annual Meeting, November 30 - December 4, 1975.

18Wennagel, G. J., Mason, P. W., and Rosenbaum, J. D. "IDEAS,
Integrated Design and Analysis System." (Preprint) 680728, Soc. Automot.
Eng., October 1968.

19"IPAD: Integrated Programs for Aerospace-Vehicle Design."
NASA CP-2143, September 1980,

20Leondis, Alex. "Large Advanced Space Systems Computer-Aided
Design and Analysis Program," NASA CR-159191, 1980.

21Vos. R. G., et al., "Development and Use of an Integrated
Analysis Capability.™ AIAA Paper 83-1017, 1983.

22de Kruyf, J., Ferrante, J. G., and Dutto, E. "ESABASE, A
Computer-Aided Engineering Framework Facllitating Integrated Systems
Design." ESA Journal, Vol. 6, 1982, pp.415-429.

23Dror, B. "Computer—-Aided Design at Israel Aircraft Industries,"
Computers & Graphics, Vol 3., Nos. 2/3, 1978, pp. 93-105.

2“Fult’.on, R. E., et al. "Application of Computer~-Aided Aircraft
Design Iin a Multidisciplinary Environment." Presented at the
AIAA/ASME/SAE 14th Structures, Structural Dynamics, and Materials
Conference, AIAA Paper 73-353, March 20-22, 1973.

66

25Schwing, J. Lo "User Interface for Integrated Computer-Aided
Design Systems," NASA Research Grant NCCI-T74, June 1984,

26Date, C. J. An Introduction to Database Systems. Addison-Wesley
Publishing Company, February 1982.

27Study Group on Data Base Management Systems. Interim Report,
ANSI/X3/SPARC, pp. 1116-1128, February 1975.

28Codd, E. F. "A Relational Model of Data for Large Shared Data
Banks." CACM 13, No. 6, June 1970.

29Sidle, Thomas W. "Weaknesses of Commercial Data Base Management
SYSTEMS in Engineering Applications." Presented at the 17th Design
Automation Conference, 1980, pp. 57-61. :

30Felippa, C. A. '"Database Management in Scientific Computing-I.
General Description," Computers & Structures, Vol. 10, 1979, pp. 53-61.

31Bandursk1, A. E. and Jefferson, D. K. "Data Description for

CAD." Presented at the ACM SIGMOD Workshop, 1975.

326rabowsk1. H. and Eigner, M. "Employing a Relational Data
Structure in a CAD System." Proceedings of the Interactive Techniques
in Computer Aided Design, September 21-23, 1978, pp. 367-377.

33"Engineering and Scientific Data Management."™ NASA CP-2055, May
18-19, 1978.

3“Astrahan, M. M. et al. "System R: A Relational Data Base
Management System," Computer, Vol. 12, No. 5, May 1979, pp. u42-u8.

35Stonebraker, M., Wong, E., and Kreps, P. "The Design and
Implementation of INGRESS," ACM Transactions of Database Systems, Vol.
1, No. 3, September 1976, pp. 189-222.

. ,

36Erickson. Wayne J. "RIM -- A Relational Database Management
System." CDC VIM 34 Mpls, Control Data Corp., 1981, pp. 1-80 through 1-
85. ‘ ‘)

37Jacky, J. P, and Kalet, I. J. "A General Purpose Data Entry
Program,” Computing Practices, Vol. 26, No. 6, June 1983, pp. 409-4#17,

3BGentry, Arvel E. "The Mark IV Supersonic-Hypersonic Arbitrary
Body Program," AFFDL-TR-73-159, November 1973.

67

39Cvlatt, C. R. "Image: A Computer Code for Generating Picture-Like
Images of Aerospace Vehicles." NASA CR-2430, September 1974.

CONFIGURATION TRIAL DESIGN
REQUIREMENTS CONFIGURATION EXPERIENCE
A
y
ANALYSIS RECONFIGURE

PERFORMANCE
RESULTS

DESIGN
CONSTRAINTS

COMPARE

FINAL
DESIGN

Fig 1 - The design process

4!’,,f"””” - N\\\\“‘\~\q,

WEIGHTS [t —»=~ AERODYNAMICS
T 1
PROPULSION =& » PERFORMANCE

Fig 2 - Data communication between the engineering
specialists

DATA TRANSFERED BY GLOBAL AND DATA FILES

PROGRAM A >

PROGRAM B

(a) Close~coupled integration

PROGRAM C

DATA TRANSFER THROUGH PROGRAMS BY INPUT FILES

PROGRAM A \.

(b) Close~-coupled interfacing

PROGRAM B “ PROGRAM C

DATA TRANSFERED THROUGH A CENTRAL DATABASE

PROGRAM A

(c) Loose~coupled integration

PROGRAM B

PROGRAM C

DATABASE

DATA TRANSFERED THROUGH A PRE-PROCESSOR AND CENTRAL DATABASE

PROGRAM A

_

@ueu

PRE-PROCESSOR

Fig 3 - Program coupling techniques

PROGRAM B

@eu)

PROGRAM C

@ieu

PRE-PROCESSOR

PRE-PROCESSOR

(d) Loose~coupled interfacing

DATABASE

69

70

APPLICATION PROGRAM

EXTERNAL SCHEMA

CONCEPTUAL SCHEMA

INTERNAL SCHEMA

DIsK

STORAGE

®Program Interface Definition
®Complete Database Definition

® Access Structure Definition

Fig 4 - Three schema database architecture

VEHICLE

V# | VNAME ENGINEER | DATE

V1 | SHUTTLE REHDER 01/05/75
V2 | FIGHTER NAFTEL 06/17/84

V3 | TRANSPORT | CRUZ 11/06/73
SUBSYSTEMS
Si#t | SNAME MASS
St | SEAT 1 150
S2 | AVIONICS 500
S3 | JET ENGINE 2000
S4 | ROCKET ENGINE 2500

PACKAGING

Vit S# | XCG] YCG | ZCG

Vi| st 20 0 10
Vi) s2{ 18 0 10
Vi] sS4} 95 =10 20
Vi| S4| 95 10 | 20
Vil s 10 0 5

Fig 5 - Mass properties relational database

SHUTTLE | REHDER | 01/05/75 [FIGHTER | NAFTEL | 06/17/84 (IfffiifRT CRUZ' |11/06/73
Vi . V3
I
95 | 10] 20 95 110 | 20 b 18} 0] 10 20 0] 10 ? 10}j 0} 5
= 4
sS4 S S2 S1 S?
7ROCKET ENGINE | 2500 AVIONICS | 500 / SEAT | 150 a/, JET ENGINE | 2000

RECORDS: VEHICLES, PACKAGING, SUBSYSTEMS

SETS

: Vi, St

Fig 6 - Mass properties network database

(4

SHUTTLE |[REHDER | 01/05/75]
[FIGHTER | NAFTEL J06/17/84]
[TRANSPORT | CRUZ | 11/06/73]

[EEAT T150] EERT [150
|ROCKET ENGINE]
9510 J20] 0fo 5]
95 |0 |-20]
20 Jo [10]

Fig 7 - Mass properties hierarchical database

73

EXECUTIVE

(USER INTERFACE)

PROGRAM PROCEDURE CONFIGURATION DATA TEMPLATE
LIBRARY LIBRARY LIBRARY DICTIONARY LIBRARY
@ PROGRAM ©® PROCEDURE ® CONFIGURATION @ RELATION © TEMPLATE
CATALOG | CATALOG "‘CATALOG CATALOG CATALOG
@ PROGRAMS ©® PROCEDURES © CONFIGURATION ® RELATION @ TEMPLATES
DATABASES O DEFINITION
® DESCRIPTION

Fig 8 - Single-user

CAE architecture

ACTIVITY

LOG

7L

PROGRAM_CATALOG

P_NAME VER | DATE DESCRIPTION

GEO_DIiG 1 01/06/84 | DIGITIZE WING/BODY/TAIL/BODY FLAP

HABFRMT 1 01/06/84 | CONVERT DIG_OUT TO HAB FORMAT

IMAGE 1 01/06/84 | DISPLAY HAB GEOMETRY

GEO_PRP 1 01/06/84 | COMPUTE PROPERTIES FROM HAB GEOM

WTS_BAL 1 01/06/84 | QUICKIE WEIGHTS AND BALANCE

HYPERPRE | 1 01/06/84 | PREPROCESSOR FOR HYPER HYPERPRE.F77

HYPER 1 01/06/84 | QUICK HYPERSONICS FROM BOEING
SOURCE RUN LIBRARY PROCEDURE KEY NAME
DIGVEH.FTT DIGVEH.SEG PLOT10 DG GEOMETRY AWW
HABFRMT.F77 | HABFRMT.SEG ’ DG GEOMETRY AWW

{IMAGE.FT7 IMAGE.SEG PLOT10 IMAGE HAB AWW

WAB.FT7 WAB.SEG) WAB HAB AWW
WTBAL.FT7 WTBAL.SEG WAB WEIGHTS AWW
HYPERPRE.F77 | HYPERPRE.SEG HYPER PREPROP AWW
HYPER.F77 HYPER.SEG PLOT10 HYPER AERC AWW

Fig 9 - Program catalog

6L

PROCEDURES

P_NAME P# COMMAND LINE DESCRIPTION .

DG 1 SEG DIGVEH.SEG EXECUTE DIGITIZING PROGRAM

DB 2 SEG REVIEWER.SEG T_DIG_OUT REVIEW DIGITIZED OUTPUT

DB 2 SEG HABFRMT.SEG FORMAT HAB GEOMETRY AND GEOMETRIC PARAMETERS
IMAGE 1 SEG IMAGE.SEG DISPLAY HAB GEOMETRY

WAB 1 SEG REVIEWER.SEG T _UNIT WTS REVIEW UNIT WEIGHTS

WAB 2 SEG WAB.SEG - COMPUTE GEOMETRIC CHARACTERISTICS

WAB 3 SEG WTBAL.SEG COMPUTE UNIT WEIGHT

WAB y SEG REVIEWER.SEG T_WTS_PROP REVIEW WEIGHTS DATABASE

HYPER 1 SEG REVIEWER.SEG T_G H HIN REVIEW GEOMETRY, WEIGHTS,HYPER AND HYPER INPUT
HYPER 2 SEG HYPERPRE.SEG CREATE INPUT FILE HYPIN FOR HYPER

HYPER 3 SEG HYPER.SEG COMPUTE HYPERSONIC TRIM

Fig 10 - Procedure files

9L

PROC_CATALOG

P_NAME DESCRIPTION DATE NAME
DG DIGITIZE GEOMETRY 01/07/04 AWW
IMAGE DISPLAY HAB GEOMETRY 01/07/84 AWW
WAB COMPUTE WEIGHTS AREAS AND BALANCE 01/07/84 AWW
HYPER COMPUTE HYPERSONIC AERODYNAMICS! 01/07/84 AWW
Fig 11 - Procedure catalog
DB_CATALOG ‘

DB_NAME ORIGIN M _DATE DESCRIPTION NAME C_DATE
EXAMPLE SYSTEM 01/05/8Y4 | BENCHMARK INPUT DATA SYSTEM | 01/05/84
MARTIN EXAMPLE 01/08/84 | MARTIN TASK II SSTO AWW 01/06/84
MARTIN2 MARTIN 01/10/84 | MMC1 WITH NEW WING AWW 01/08/84

Fig 12 - Configuration database catalog

LL

ACTIVITY_LOG

01/10/84

USER_ID | SESSION COMMENTS DB_NAME DATE TIME

AW START MARTIN STUDY MARTIN 01/06/84 | 10:30

AWW INCREASE BODY FOR P/L |MARTIN 01/06/84 | 16:20

AWW COMPLETED P/L STUDY MARTIN 01/08/84 | 11:10

AWW NEW STUDY-RESIZE WING |MARTIN2 01/08/84 | 16:08
| AWW CCV TECHNOLOGY WEIGHTS]MARTINZ2

11:14

Fig 13 - Activity log

8L

U

IUSER 2!
IUSER 3=

]

SER 1

EXECUTIVE

(USER INTERFACE)

©® LOCAL DATABASES

USER 1 ENVIRONMENT
@ CONFIGURATION LIBRARY

© TEMPLATE LIBRARY
®PROCEDURE LIBRARY
® LOG

{USER 2 ENVIRONMENT]

© GLOBAL DATABASE

—{USER 3 ENVIRONMENT]|

PROGRAM PROCEDURE CONFIGURATION DATA - TEMPLATE USER
LIBRARY LIBRARY LIBRARY DICTIONARY LIBRARY CATALGG
® PROGRAM ®PROCEDURE @ CONFIGURATION QRELATION © TEMPLATE
CATALOG CATALOG CATALOG -CATALOG CATALOG
© PROGRAMS ®PROCEDURES ® CONFIGURATION O RELATION © TEMPLATES
DATABASES @ DEFINITION
@ DESCRIPTION

Fig 14 - Multi-user

CAE architecture

6L

RELATION GEO_CHAR

Fig

P# | PNAME PVALUE
1 STOTAL 1088.082
2 | SWLE 49.5
3 | SWTE 20,0
4 | TAPER 0.21
5 WALOC 66.11
6 | XLBODY 61.9°
7 | XLNOSE y2:7
8 | CAMBER 0.068
9 | HBODY 12.12
10 | WBODY 18.97
11 | POWER 0.43
12 | BFL 1:0
- Geometry parameter relation

15

80

RELATION XYZ'S

X Y A STATUS | NAME
0.0000 0.0000 0.0000 | 3 NOSE
0:0000 0:0000 0.0000 | O NOSE
0.0000 0:0000 0.0000 | O NOSE
0.0000 0.0000 0.0000 | O NOSE
0.5000 0:0000 { -0.5000 | 1 NOSE
0:5000 0.5000 | -0.5000 | O NOSE
0:5000 0.5000 0.5000 | O NOSE
0.5000 0.0000 0.5000 | O NOSE
1.0000 0.0000 | -0.7500 | 3 BODY

a) Geometry stored in relational form

RELATION XYZ'S

FILE_NAME

GEOM_XYZ

b) Geometry stored in a file referenced by a relation

Fig 16 - Two ways of storing bulk data files in ARIS

EXECUTIVE

QUERY PARSER

COMMAND STRUCTURER

RELATION COMMAND ROUTINES

TIME AND DATE

SYSTEM SORTING ROUTINES

DISK ACCESS

82

@ INTERACTIVE

ROUTINES

@ RELATIONAL

LIBRARY

@ HOST OPERATING

SYSTEM UTILITIES

Fig 17 - ARIS software layers

TEMPLATES

T_NAME SEQ# RELATIONS P/R NI ITEMS N_VAL | VALUES
T_DIGOUT 1 DIG_OUT PARA 4]
T_HYPGEOM 1 XYZ'S RECORD | O ¢
’ 2 GEO_CHAR PARA o
T_HABFILE 1 XYZ'S RECORD| O 0
T_UNIT_WTS 1 UNIT_WTS PARA | O
T_GEO_PROP 1 GEO_PROP PARA | O
T_UNTS GPRP | 1 UNIT_WTS PARA | O
2 GEO_PROP PARA 0
T_WT_PROP 1 WT_PROP RECORD | 0 0
T_G_W_HIN 1 GEO_CHAR PARA | O
2 WT_PROP RECORD | 1 CcG 1 TOTAL
3 HYPER_IN PARA 0 :
T_EXAMPLE 1 WT_PROP RECORD| O 0
Fig 18 - Template description
TPLATE_CATALOG
T_NAME DESCRIPTION 1/0/RG PROGRAM NAME DATE
T_DIG _OUT DIGITIZE OUTPUT OUTPUT GEO_DIG AWW 01/06/84
INPUT HABRFMT AWW 01/06/84
T_HYPGEOM HAB GEOM FILE AND PARAMETERS OUTPUT HABFRMT AWNW 01/06/84
T_HABFILE HAB GEOMETRY FILE INPUT IMAGE AWW 01/06/84
INPUT GEO_PRP AWW 01/06/84
T_UNII_WTS UNITS WEIGHTS INPUT REPORT AWW 01/706/84
T_GEO_PROP GEOMETRIC PROPERTIES OUTPUT GEO_PRP AWW 01/06/84
T_UWTS_GPRP UNITS WEIGHTS AND GEOM PROP INPUT WIS_BAL AWW 01/06/84
T _WT_PROP WEIGHT PROPERTIES QUTPUT WIS_BAL AWW 01/06/84
T_G_W_HIN GEOM, CG, AND INPUT INPUT HYPER AWW 01/06/84
T_EXAMPLE RECORD EXAMPLE REPORT AWW 01/06/84

Fig 19 - Te

mplate catalog

€8

RELATION

REL_NAME | DESCRIPTION P/A | N_P/A{NAME [NC |C_NAME |NU |U_NAME | DATE
DIG OUT | DIGITIZING OUTPUT PARA |28 | AwW |1 |cGE0 DIG |2 |IMAGE | 01/06/84
8 GEOM_PRP | -
XYZ'S HAB GEOMETRY FILE ATTR |1 AWW |17 |HABFRMT |2 |IMAGE | 01/06/84
: - GEO_PRP | -
GEO_CHAR | GEOMETRIC CHARACTERISTICS | PARA [12 | AwW |1 |GEO DIG |1 |HYPER | 01/06/84
GEO_PROP | GEOMETRIC PROPERTIES ATTR | 8 awd |1 |GEO_PRP |1 |WTS BAL | 01/06/84
UNIT_WTS | COMPONENT UNIT WEIGHTS PARA | 2 AWW |1 | USER 1 |wrsBAL | 01/06/84
WT_PROP | WEIGHTS PROPERTIES ATTR | 3 awi |1 |wrs_BaL |1 |HYPER | 01/06/814
HYPER_IN | HYPER USER INPUT PARA | 2 AWW |1 | USER 1 01/06/84

HYPER

Fig 20 ~ Relation catalog

78

PAR/ATT

REL_NAME | P/A_NAME | DESCRIPTION UNITS TYPE | NCHAR|DIM 1 DIM 2] DIM 3
DIG_OuT NCROSS NUMBER OF X-STATIONS NA . INT 0 1 1 1
DIG_OUT XCROSS CROSS SECTION STATIONS FT REAL | O 20 1 1
DIG_OUT NCRPTS NUMBER OF CROSS SECTION POINTS NA INT 0 1 1 1
DiG_ouT YCROSS Y CROSS SECTION POINTS FT REAL { O 20 20 1
DIG_OUT ZCROSS Z-CROSS SECTION POINTS FT REAL | O 20 20 1
DIG_OUT NPLAN NUMBER OF PLANFORM POINTS NA INT 0 1 1 1
DIG_ouT XPLAN X-PLANFORM POINTS FT REAL | O 20 1 1
DIG_OUT PLAN Y-PLANFORM POINT FT REAL | O 20 1 1
DIG_OUT NSIDET NUMBER OF SIDE TOP POINTS NA INT o 1 1 1
DIG_OUT XSIDET X-SIDE TOP POINTS FT REAL | O 20 1 1
DiG_ouT ZSIDET Z-SIDE TOP POINTS FT REAL | O 20 1 1
DIG_OuT NSIDEB NUMBER OF SIDE BOTTOM POINTS NA INT 0 1 1 1
DIG_OUT XSIDEB X-SIDE BOTTOM POINTS FT REAL] O 20 1 1
DIG OUT ZSI1DEB Z-SIDE BOTTOM POINTS FT REAL | O 20 1 1
DIG_OUT NWING NUMBER OF WING PLANFORM POINTS NA INT 0 1 1 1
DIG_OuT XWING X-WING PLANFORM POINTS FT REAL | O 12 1 1
DIG_OUT YWING Y-WING PLANFORM POINTS FT REAL | O 12 1 1
DIG_OuT ZWING Z-WING PLANFORM POINTS FT REAL (O 12 1 1
DIG_OUT NWAIRF NUMBER OF WING AIRFOIL POINTS NA INT 0 1 1 1
DIG_OUT XWAIR X-AIRFOIL POINT NA REAL | O 20 1 1
DIG_OUT ZMAIR Z-AIRFOIL POINT NA REAL | O 20 1 1
DIG_OUT NTAIL NUMBER OF TAIL PLANFORM POINTS NA INT 0 1 1 1
DIG_OUT XTAIL X-TAIL POINTS FT REAL | O 12 1 1
DIG OUT YTAIL Y-TAIL POINTS FT REAL | O 12 1 1
DIG_OUT ZTAIL Z-TAIL POINTS FT REAL | O 12 1 1
DIG_OUT NTAIRF NUMBER OF TAIL AIRFOIL POINTS NA INT 0 1 1 1
DIG_OUT XTAIRF X-TAIL AIRFOIL POINTS NA REAL | O 20 1 1
DIG_ouT ZTAIRF Z-TAIL AIRFOIL POINTS NA REAL | O 20 1 1
XYZ'S FILENAME | HAB GEOMETRY FILE NAME NA FILE | 80 1 1 1

Fig 21 - Data description

c8

PAR/ATT (con't)

REL_NAME | P/A_NAME | DESCRIPTION UNITS TYPE | NCHAR|DIM_1|DIM 2|DIM_3
GEO_CHAR | STOTAL | WING REFERENCE AREA FT2 REAL | O 1 1 1
GEO_CHAR | SWLE WING LEADING SWEEP DG REAL |0 1 1 1
GEO_CHAR | SWTE WING TRAILING SWEEP DG REAL | 0 1 1 1
GEO_CHAR | TAPER WING TAPER RATIO(CTIP/CROOT-REF) |NA REAL | 0 1 1 1
GEO_CHAR | WALOC = | THEORETICAL WING APEX LOCATION FT REAL | O 1 1 1
GEO_CHAR | XLBODY TOTAL BODY LENGTH FT REAL | O 1 1 1
GEO_CHAR | XLNOSE BODY NOSE LENGTH FT REAL | O 1 1 1
GEO_CHAR | CAMBER BODY CAMBER FT REAL | 0 1 1 1
GEO_CHAR | HBODY BODY HEIGHT FT REAL | O 1 1 1
GEO_CHAR | WBODY BODY WIDTH FT REAL | 0 1 1 1
GEO_CHAR | POWER POWER LAW BODY FACTOR NA REAL | 0 1 1 1
GEO_CHAR | BFL BODY FLAP LENGTH FT REAL | O 1 1 1
GEO_PROP | C_NAME COMPONENT NAME NA CHAR | 8 1 1 1
GEG_PROP |S_AREA | SURFACE AREA FT2 REAL | 0 1 1 1
GEO_PROP | F_AREA MAXIMUM FRONTAL AREA FT2 REAL | O 1 1 1
GEO_PROP |S_AREA SIDE AREA FT2 REAL | O 1 1 1
GEO_PROP | P_AREA PLANFORM AREA FT2 REAL | O 1 1 1
GEO_PROP | VOLUME INTERNAL VOLUME FT3 REAL | 0 1 1 1
GEO_PROP {CG XYZ CENTER-OF-AREA LOCATION FT REAL { O 3 1 1
GEO_PROP |I AREA MOMENTS/PRODUCTS OF INERTIA |FT2 REAL | O 6 1 1
UNIT WTS |C_NAME COMPONENT NAME NA CHAR | 8 1 1 1
UNIT WIS |C_U WIS | COMPONENT UNIT WEIGHTS LB /FT2 REAL | O 1 1 1
WT_PROP |C_NAME COMPONENT NAME NA CHAR | 8 1 1 1
WT_PROP |WEIGHT COMPONENT WEIGHT LB REAL | O 1 1 1
WI_PROP |CG XYZ CENTER-OF-GRAVITY LOCATION FT REAL | O 3 1 1
HYPER IN |PSTAG NEWTONIAN COEFFICIENT NA REAL | 0 1 1 1
HYPER_IN |PRINT PRINT FLAG (=YES FOR PRINTING) NA CHAR | 4 1 1 1

Fig 21 (con't)

98

336 3 3 3 3 3 3 3 3 3 3 3 % % %%
* *
* AIDES *
* ‘ *
REVIEWER®
* - *
360 3 3 3 3 06 0 0 30233 2% N %

Template = T UNIT_WTS

SCREEN 1
L# | C_VALUE | O_VALUE | DESCRIPTION | UNITS
1 8 65 8.87 WNG COMP WT LB/FT2
2 5.42 5.42 BDY COMP WT LB/FT2
3 6.42 6.42 TAIL COMP WT LB/FT2
4y 4.55 4.55 BFLP COMP WT LB/FT2
EDIT
>1,P,9.65 (change present value on line 1 to 9
>2,P,6.50 (change present value on line 2 to 6
>R (re-print the screen)

SCREEN 1
L# | C_VALUE | O_VALUE | DESCRIPTION | UNITS
1 9 65 8.87 WNG COMP WT LB/FT2
2 6.50 5.42 BDY COMP WT LB/FT2
3 6.42 6.42 TAIL COMP WT LB/FT2
] 4.55 4.55 BFLP COMP WT LB/FT2
EDIT .
>E (save changes and end reviewer session)

Fig 22 - Parameter reviewer example

.65)
:50)

87

336363 3 33 3 36 3636 2 2 3% %%
*

* AIDES
*

*REVIEWER
*
RRHURHRRNNRRNNRNNNR

X’ o kK N Nk

Template - T_EXAMPLE

COLUMN DIMENSION NAME DESCRIPTION UNITS
1 C_NAME COMPOKENT NAME
2 WEIGHT COMPONENT WEIGHT LB
3 (3 CG XYZ CENTER-OF-GRAVITY FT
SCREEN 1
coL# | 1 | 2 | 3 | 4 | 5
L# | C_NAME | WEIGHT | cG(1) | cG(2) | cG(3)
1P BODY 2463.0 62.0 0.0 2.05
10 BODY 2463.0 62.0 0.0 2,05
2P WING 486.0 68.0 0.0 -3.05
20 WING 436.0 68.0 OiO -3.05
3P TAIL 127.0 85.0 0.0 4.36
30 TAIL 127.0 85.0 0.0 4:36
Lp TOTAL 3076.0 63.9 0.0 1.32
ko TOTAL 3026.0 63.8 0.0 1.41
EDIT
>1,P,3,2555 (change present value on line 1/column 3 to 2555)
>D,1,2 (display columns 1 and 2) '
>R - (re-print the screen)

Fig 23 - Parameter or relation reviewer example

88

SCREEN 1

coL# | 1 | 2

L# | C_NAME | WEIGHT

1P BODY 2555.0
10 BODY 2463.0
2P WING 486.0
20 WING 436.0
3P TAIL 127.0
30 TAIL 127.0
up TOTAL 3076.0
40 TOTAL 3026.0

- - b am an -

EDIT
>E (save changes and end reviewer session)

Fig 23 (con't) - Record or relation reviewer example

[eN*NeNe]

e NeNeNel

SUBROUTINE INPUT

ROUTINE TO INPUT DATAVINTO THE HYPERSONIC PROGRAM

COMMON / C_INPUT / STOTAL, SWLE, SWTE, TAPER, WALOC, XLBODY,

+ XLNOSE, CAMBER, HBODY, WBODY, POWER,BFL,
+ PSTAG, PFLAG, XCG
: , /*AIDE
TEMPLATE T_G_W_HIN /*AIDE
: /*AIDE
RELATION GEO_CHAR /*AIDE
REAL STOTAL, SWLE, SWTE, TAPER, WALOC, XLBODY,XLNOSE /*AIDE
+ CAMBER, HBODY, WBODY, POWER,BFL /*AIDE
RELATION WT_PROP /*AIDE
DIMENSION CG(3) /*AIDE
RELATION HYPER_IN /¥AIDE
REAL PSTAG /*AIDE
CHARACTER*4 PFLAG /*AIDE
/*AIDE
/*AIDE
CALL DBIN1(STOTAL, SWLE, SWTE, TAPER, WALOC, XLBODY, /*AIDE
+ * XLBODY, CAMBER, HBODY, WBODY, POWER,BFL) /*AIDE
CALL DBIN2(CG,NRECORDS) ‘ /¥AIDE
XCG = CG(1)
CALL DBIN3(PSTAG,PFLAG) /*AIDE
RETURN
END

Fig 24 - Precompiled code incorporated with an' input subroutine

90

@ INTEGRATED PROGRAM

DATABASE INPUT INPUT SUBROUTINE
PRE~-COMPILER

APPLICATION PROGRAM

DATABASE OUTPUT > OUTPUT SUBROUTINE
PRE-COMPILER

DATA DICTIONARY
AND TEMPLATE

CONFIGURATION
DATABASE

® INTERFACED PROGRAM

DATABASE INPUT j|——>1 PRE-PROCESSOR
PRE-COMPILER

4

INPUT FILE

APPLICATION PROGRAM

Gesurs en

DATABASE OUTPUT b——— POST-PROCESSOR
PRE~COMPILER

Fig 25 - Program integration and interfacing with the formatter

16

92

META DATABASE
PROGRAM CATALOG
PROCEDURE LIBRARY
CONFIGURATION CATALOQG
DATA DICTIONARY
TEMPLATE LIBRARY
USER CATALOG

CONFIGURATION DATABASE 1
CONFIGURATION DATABASE 2

CONFIGURATION DATABASE 3

PROGRAM FILES
PROGRAM1.SOURCE
PROGRAM1 (SEG
PROGRAM1 . PROC
PROGRAM2 .SOURCE
PROGRAM2.SEG
PROGRAM2.PROC

LIBRARY FILES
PLOT10.SOURCE
DI3000.SOURCE

Fig 26 - Global database directory

DATA DICTIONARY
PROGRAM LIBRARY
PROCEDURE
TEMPLATE LIBRARY

FORMATTER ARIS

SYSTEM INPUT AND OUTPUT

ADMINISTRATOR

INPUT SUBROUTINE

APPLICATION
PROGRAM

CONFIGURATION
DATABASE

OUTPUT SUBROUTINE

REVIEWER <€

Fig 27 - Installing a new program into the CAE system

€6

94

@ PROCEDURES @ PROGRAMS @ TEMPLATES
GEO_DIG T_DIGOUT
DB REVIEWER T_DIGOUT
T_DIGOUT
HABFRMT
T_HYPGEO
IMAGE <| IMAGE} T_HABFILE
T_HABFILE
GEO_PROP .
T WT_PROP CONFIGURATION
DATABASE
WAB REVIEWER T_UNIT_WTS
T_UWTS_GPRP
WTS_BAL
T_WT_PROP
REVIEWER T_G_W_HIN
HYPER HYPERPRE T_G_W_HIN
"HYPIN
HYPER

Fig 28 - Program and data flow

Fig 29 - Engineering drawing to be digitized

95

INPUT VEHICLE VIEW
1 - ORTHOGRAPHIC VIEW
2 -TOP VIEW
3 - SIDE VIEW
4 - FRONT VIEW
5 - Z00M
6 - FINISHED

Fig 30 - Vehicle panel geometry

0.16p
0.08f~
Pitching
Moment
0 T 1]]
10 20 30 50
-,08p—
-.16%-

Angle of attack, degrees

Fig 31 - Vehicle trim aerodynamics

GEO_DIG

HABFRMT

CEDIED

97

PROGRAM

GEO_PRP

WTS_BAL

HYPERPRE

WT_PROP

O RELATION

Cunrr_wts)

Fig 32'- Program and relation data flow (data dependency graph)

APPENDIX

98

99

A RELATIONAL INFORMATION SYSTEM

Relational Data Model

Currently, there are three basic data models used to'structure data
in database management systems (Refs. A1 and A2). The most recent data
model to be introduced, the relational model, is the only one based on
mathematical theory.A3 It is becoming a widely accepted data model
since data can be easily structured and manipulated.. Also it is easier
to understand than the other models, and data is retrieved by simple
queries. Based on the evaluation of current data management systems, it
was decided to develop a general-purpose relational system which is
called A Relational Information System (ARIS) to support the computer-
aided engineering framework.

The relational model is based on set theory. Instead of explaining
the relational model in strict mathematical terms, a simplistic approach
is taken to describe the current relational implementation.

As shown in Figure A1, the relation, TEST, can be represented as a
table. The relation consists of six attributes (or columns). The degree
of the relation is equal to the number of attributes, e.g., the degree of
TEST is six. The number of tuples (or rows in the table) is called the
cardinality of the relation, e.g., the cardinality of TEST is 5.

To review and manipulate relations, a query language was developed
(based on relational algebra)"3 for interactive processing along with
corresponding library of subroutines for database processing from an

application program.

Interactive ARIS

The interactive mode of ARIS receives commands that are entered

directly from a user terminal to create and manipulate relational data.

100

General Comments

The system prompts the user with a right arrow (>) whenever input
is required to be entered. Each command line consists of one or more
words typed in by the user. The command can be continued to the next
line by using the (&) character at the end of a line. The following
are examples of the same command:

> SELECT * FROM TEST WHERE TEST# EQ 100
is the same as

> SELECT * FROM TEST &

> WHERE TEST# EQ 100
To separate words in a command either a space or a comma or both can be
used. The following commands

> SELECT TEST#, RUNF FROM TEST

> SELECT TEST# RUN# FROM TEST
are identical. Multiple spaces are ignored. A character string with
blanks must be enclosed by single quotes (') as shown in the following
command :

> SELECT FROM TEST WHERE NAME EQ 'A W WILHITE'

If no blanks are in the character string, single quotes are not needed.
A maximum of 50 tokens (words, values, or subscripts) is allowed for
each interactive command with a maximum of 132 characters per line.

Many of the interactive commands have options and/or selections
that a user can make. In defining the syntax of the commands, an option
within a command is given as

A

B

C

101

This syntax represents an option where either A, B, C or none of these
options can be used. The ellipsis syntax

means that the preceding option can be repeated. The syntax

i

represents a selection where either A, B, or C must be used.

Although not obvious now, the syntax will be clarified with the
syntax of the interactive commands and the corresponding examples (see
the SELECT command).

Initiation and Termination

The following sections of this paper will describe the construction
of a database, the construction of relations In a database, the input of
tuples into relations, and the various ways relatlons can be manipulated.
When ARIS 1s first executed, a banner will appear with the date and time.
The user must first enter the database name as shown in Figure A2 before
any database activities can be performed. The database name consists of
one to six characters and must be unique. If no database exists with
that name, a virgin database is created.

For the manipulation of two simultaneous databases (e.g., to transfer
a relation from one database to another or to save the temporary database)
both database names can be entered after the input request by:

database-name-1, database-name-2

These databases are considered to be the permanent and temporary
databases respectively. If the temporary database is to be saved, its

name must be entered at the initiation of a session.

102

QUIT: To terminate the program and save the current database(s),
the command
QUIT
is used. A statement declaring the names of the permanent database and
the temporary database, if a temporary database name was entered at the
beginning of the session, will appear on the screen.
HELP: The command
HELP
lists the syntax and abbreviations that can be used for all the ARIS
interactive commands. An illustration of each of the above commands is

given in Figure A2.

Relation Definition

A database consists of one or more relations. When the program is
initiated, the first.response requested from the user is the database
name (Fig. A3). The database name, DBNAME, is entered. The data
description required for the relation TEST from Figure A1 is shown in
Figure A3.

CREATE. The data description of a new relation can be added to the
database at any time with the CREATE command. When CREATE is entered,
questions are asked concerning the description of the relation. First,
the relation name (TEST), is entered. Relation names must be unique and
restricted to 8 characters or less. The number of attributes (6) is then
entered.for the example in Figure A3. A maximum of 50 attributes is
allowed. For each attribute in the relation, the attribute name,
dimension, type, inverted attribute/duplicates allowed and primary key

selection must be entered. The attribute name must be unique within a

103

relation and is restricted to eight or less alphanumeric characters.
Remember, once a relation has been created, the attribute definitions
cannot be changed.

The dimension (an extension to the relational model) is the number
of elements that can be placed in that attribute. For a dimension equai
to 1, only one value can be placed in the attribute. An attribute
dimensfoned n, where n is greater than 1, has n values assoclated with
it. The dimension can be specified as 0. For this case, both the
dimension and the type must be added to the tuple when the data is being
entered into the database (see the later sections on the Interactive Data
Manipulation Language and ARIS FORTRAN Library). There are four data
types allowed--character, real, integer, and file--and they are specified
by the key words CHAR, REAL, INT, or FILE, respectively. For character
data type, the alphanumeric character string length must be entered.

This defines the string length for each attribute element. For file data
type, the filename character string length must be entered. This data
type option, upon input, will open a file (by the name declared in each
data tuple), allow any type input, and then close the file. Real and
integer types take one computer word per element and character and file
types take the next largest integer of the defined alphanumeric character
string length divided by 4 computer words per element. A string declared
as 5 chafacters would require 2 words of storage. There is a maximum
limit of 1000 words per tuple in the interactive mode of ARIS. In rela-
tion TEST, TEST# is defined as character data type with length 8;
therefore, number of words per element is 2.

Each attribute can be inverted by entering Y for YES to the inver-
sion question (Fig. A3). Inversion is a specification to be made if fast

access is needed to 'a tuple based on the value of the inverted attribute,

104

Inverted attributes are used primarily for relations with a large number
of tuples (cardinality greater than 10,000). Search time is reduced to
a logarithmic search by the use of B*-trees (Ref. A4). For the case of

a relation with 10,000 tuples, the difference in retrieval performance
between inverted and non-inverted attributes is approximately 7:1. The
increased access speed must be traded with increased disk storage
(approximately double the storage requirement for 1 inversion, triple

for 2 inversions, etc.) and increased storage time (approximately a
factor of 4 increase). With lnversion; the tuples are automatically
sorted in ascending order on each inverted attribute. When an attribute
is inverted (by entering Y), a specification can be made for duplicates
allowed (by entering Y or N for YES or NO). If duplicates are not allowed
(N specification), no tuple can be entered with the value of the inverted
attribute the same as one previously stored. This specification can be
used as a simple data protection scheme, e.g., only allow unique test
numbers in the relation test.

Primary key is an integrity constraint option that can be used to
ensure that each tuple is unique. This specification is similar to dupli-
cates allowed but is more encémpassing. In the TEST relation, entering Y
(for yes) to the primary key question for attribute TEST# (Fig. A3)
ensures that each tuple will have a unique test number. Another example
would be a salary relation in which first name, middle name, last name,
and salary are attributes. To ensure that a salary 1s unique to each
employee, the three attributes first name, middle name, and last name
would be the primary key. The extreme case would have all attributes
participate as the primary key but the tuple input performance is de-

graded with each primary key attribute because each primary key attribute

105

in all tuples must be checked to ensure uniqueness. For best perfor-
mance no attribute has to be declared as primary key. Caution must be
exercised since attributes cannot be changed directly to primary key
after the relation is created.

The other attributes are entered in Figure A3: model number
(MODEL#), wind tunnel name used for the test (TUNNEL), the cognizant
engineer (ENGINEER), a description of the test (COMMENTS), and the date
(DATE). After a relation is entered, the relation description is print-
ed along with the number of words required to store each attribute.

Figures A4-A6 illustrate the CREATE command for three other
relations. Relation MODEL describes the wind tunnel models tested with
the model number (M#), type of model (TYPE), description of the model
(COMMENTS), and the model scale (SCALE) which is the model size divided
by the real size of the aircraft. The relation TEST-RUN describes the
tests. The attributes are test number (TEST#), run number (RUN#),]
description of the run (COMMENTS), the configuration buildup (CONFIG),
the control settings of the aileron (C1) and rudder (C2) in degrees,
the run attitude change (POLAR) and the speed parameter of the test
(MACH). Finally, illustrating dimensioned attributes, the relation
TDATA describes the aerodynamic data measured. The aerodynamic data
(DATA) is presented as a function of test number (TEST#), run number
(RUN#) and point number (POINT#). The aerodynamic data measured are
angle of attack, side-slip angle, lift coefficient, and drag
coefficient--DATA(1) through DATA(4) respectively.

CHANGE. The CHANGE command is used to change the relation
description. To change an attribute name in a relation, the command

CHANGE attribute name-1 TO attribute-name-2 IN relation-name

106

is used. An example is given in Figure A7. To change a relation name
CHANGE relation-name-1 T0 relation-name-2

is used. To change inverted attribute specifications, use the command

CHANGE attribute-name IN relation-name TO {INV }
: NONINV
where INV specifies attribute inversion (Fig. A7) and NONINV eliminates
the inversion. Only Juplicates allowed inversion is permitted since
duplicate attribute values may already exist in the relation. The time
required to execute this command will depend on the cardinality of the
relation.

RELATION. All the relation names in the database can be listed with
the RELATION command (Fig. A7). By appending a relation name to the entry
RELATION as shown in Figure A7, the description and cardinality of a rela-
tion are displayed. The relation command syntax 1s

RELATION [relation-name]

End of Example. Once relations have been defined, data can be stored

in these relations either interactively, by file, or by a FORTRAN applica-
tion program. Although no tuple data has been stored in Figures A2-A7,
the session can be ended and the database saved (relation descriptions)

by using the QUIT command.

Interactive Data Manipulation Language

The interactive data manipulation language is based on the relational
algebra constructs outlined in references A1 and A3, Additional commands
have been added in ARIS for user convenience. To begin the interactive

session (Fig. A8) the database 1s opened by entering the database name,

107

DBNAME ,
INPUT. To enter tuples interactively, the command
INPUT[R] relation-name
is used. Each attribute is entered individually as shown in Figure AS.
When the key word, SEND, is entered for the first attribute value of a
tuple instead of entering a value, control is returned to the interac-
tive command level.

For variable length attributes (dimension specified as 0), both the
dimension and type are entered before the attribute values.

The INPUTR option replaces old data with that just entered if a
primary key conflict occurs. If a primary key conflict occurs with tﬁe
INPUT option, an error message would be printed and the old data would
not be changed.

DLOAD. To enter tuples from an external file the command

DLOAD relation-name file-name
is used. The external file data iIs structured as stacked attribute
values similar to the INPUT command. An example of INPUT and the exter-
nal file, AWTEST, 1is shown In figure A9. Tuples are entered into the
other relations in figures A9-A11.

The command RELATION TEST in figure A9 outputs the. relation
description and the number of tuples entered. Five tuples have been
entered--one from interactive input and four from the external file
AWTEST.

PRINT. The command

PRINT relation-name
lists all tuples in the relation as shown in Figures A9-A11.

SELECT. The most comprehensive command for data retrieval is SELECT

t‘

108

because it can retrieve any or all attributes for a relation based on
any combination of logical and boolean operations. The results can be
sorted and returned to the user or placed in a temporary relation for

further manipulation. The SELECT format is

*
SELECT FROM relation-name
att-1 [,att-2]....]
EQ
NE TOL
WHERE attw-1 LT value-1 PTOL tol-1
LE MTOL
GT
GE
EQ
NE TOL
{AND} attw-2 JLT value-2 PTOL tol-2|} ...
OR LE MTOL
GT
GE

DOWN DOWN
TTY i #
new-relation-name

where * represents all the attributes in the relation and att-n are
selected attributes that are retrieved. The default command
SELECT * FROM relation-name
is identical to the
PRINT relation
command as shown in figure A12. The command
SELECT TEST# FROM TEST
retq}eves all occurrences of just test number and prints the results to
the terminal (TTY).
In the WHERE clause, attw-n are the attributes that are logically

compared with values, value-n, to specify the conditions for tuple

109

retrieval. A tolerance, tol-n, on numeric data (TOL for t tolerance,
PTOL for positive tolerance, and MTOL for a negative tolerance) can be
specified on any logical comparison. Figure A13a is an example of the
WHERE clause that retrieves all tests conductéd by Spencer or using the
SH10 model. Figure A13b is a tolerance example.

The UP (DOWN) clause with the attribute atts-n is-used to sort the
tuples in ascending (descending) order. If more than one sort clause is
used, the first sort 1s the major sort and the following sorts are minor
sorts (fig. Al13c).

If the new relation name 1s unique in the GIVING clause, the relation
vdefinition and retrieved tuples are placed in the temporary database. |
All data manipulﬁtion commands can be used with all relations, either
permanent or temporary. If the same relation name exists in both the
permanent and temporary databases, only the relation in the permanent
database can be manipulated. But with the CHANGE command, relation
names can be changed to be unique, thus eliminating the problem.

When a temporary relation is created, the attribute names can be
changed with the RENAME clause. A one-to-one correspondence must exist
with the retrieval attributes (att-n) and the renamed attributes (attr-n).
The symbol # denotes that the temporary attribute name will not be
changed from the permanent name. The RENAME clause must be used whenever
an element of a dimensioned array is retrieved and stored in a temporary
relation. The RENAME clause is fllustrated in figure A13d where the point
number and angle of attack for test LA70 and run 1 are placed in a
temporary relation called LA701.

DELETE. To permanently delete a relation the command

DELETE RELATION relation-name

110

i1s used. To delete tuples from a relation the command

DELETE relation-name [WHERE ...]
is used. The WHERE clause (see SELECT command) specifies the tuples to
be deleted. Figure Al4a illustrates the use of the DELETE command.

ASSIGN. Once tuples have been entered into a relation, attribute
values can be changed with the following command: |

ASSIGN value TO attribute-name IN relation-name

[WHERE ...]

Without the WHERE clause, the value of attribute-name for every tuple
will be equal to the value entered with this command. For variable
length tuples where data type can change from one tuple to another,
numeric values will be conQented correctly. String values will not be
sgored in numeric (REAL‘or INT) data type attributes. An example
of the ASSIGN command is given in Figure A14b.

JOIN. The JOIN operation combines two relations into a third relation .
that has the combined attributes of each of the two joined relations.
For each tuple, the value of one attribute in the first relation is com-
pared with the value of an attribute in the second according to the

logical operator declared. If the comparison is true, then the tuples

are combined. The JOIN syntax Is - £ 7
NE

JOIN relation-name-1 AND relation-name-2 OVER att-1 LTf att-2
TTY LE
[GIVING] GT
relation-name-3 GE
CS

where att-1 and att-2 must exist in the respective relations and have
the same data type definition. If the att-2 logical option is not used,
then the JOIN is an implied EQUAL JOIN where att-1 must exist in both

relations and EQ is the implied logical operator. An example of the

111

JOIN command is shown in figure A15 which illustrates a group of queries
to determine the engineers that have tested Shuttle models.

UNION. To add the tuples of one relation to another, the command

UNION[R] relation-name-1 AND relation-name-2 [GIVING{relation name-3)

is used. The relation-name-3 literal can be a new relation or one that
already exists. The command

UNION A AND B GIVING A
simply adds the tuples of relation B to relation A. For a successful
operation, the relations must be union combatible where the attribute
names and attribute definitions for each relation must be identical.
The UNION command can also be used for the union set Qperation where the
tuples belonging to either relation A or relation B can be combined to
form a third relation C. Using the results for the relation TEMP2 in
Figure A15, the queries in Figure Al6a determine the engineers that have
tested Shuttle models (this is relation TEMP2) in either the LTPT or the
Unitary wind tunnels.

Another use of the UNION command is to transfer relation tuple data
from one database to another. A temporary relation can be created'with
the SELECT command and saved. A second database and this temporary
database can be used in another session. By using a UNION command, the
temporary tuple data can be added now to the second database.

The UNIONR option will replace old data with the new entry if a
primary key conflict is encountered, whereas the UNION option will return
an error message and keep the old data.

INTERSECT. The intersection of two (union-compatible) relations has

the syntax

112

INTERSECT relation-name-1 WITH relation-name-2

7Y
GIVING {relation-name-B}

which gives the set of all tuples belonging to both relations. The
example presented in Flgure A1é6b is to determine the engineers that have
tested Shuttle models in both the LTPT and the Unitary wind tunnels.

MIN. The command

e
MIN ’att-1 [,att-2]... 1IN relation-name
prints the minimum value of each attribute listed (see SELECT command)

for the relation (Fig. A17a).

MAX. The command
*
MAX {att-1}[,att-2]... IN relation-name
prints the maximum value of each attribute listed (Fig. A17b).

Database dump and load. With the permanent and temporary database

concepts, relation definition and tuple data can easily be copied from
one database to another. In order to transfer database data across
different computers, the data must be converted to ASCII (card image)
form. Six commands are provided for this function. The commands

DUMP [relation-name] file-name

SDUMP [relation-name] file-name

DDUMP relation-name file-name
are used to dump both relation and tuple data, relation definition data
only, and tuple data only, respectively. If no relation-name 1is specifi-
ed in the DUMP or SDUMP commands, then all relations are dumped. The

file-name specifies where the dump will be written.

113

Three inverse commands
LOAD file-name
SLOAD file-name
DLOAD relation-name file-name
read the file that was written with the dump commands.
PTCOPY. To copy the entire permanent database to the temporary
database level (destroying the current temporary database), the command
PTCOPY
is used. If a duplicate relation name occurs, the command will abort
with an error message.
JPCOPY. To copy the entire temporary database to the permanent
database level (destroylng the current permanent database), the command
TPCOPY
is used. Duplicate relation names are illegal, causing the command to
abort and return an error message.
REPLACE. To replace data in a relation with data from another
relation, the command °
REPLACE relation-name-1 [.;] WITH relation-name-2 [.;]
is used. If a database has been loaded into the system at the permanent
and temporary levels and the same relation name appears at both levels,
then the extenders .P and .T refer to the permanent and temporary
relations, respectively.
The REPLACE command deletes the data in relation 1 and inserts the
data fom relation 2 into relation 1.

COPY. To copy an entire relation from one database level to another,

the command

114
COPY relation-name-1 [:;] WITH relation-name-2 [:g]

L}

is used. If reldtion-name-2 does not already exist, the copy command
will create relation-name-2 and insert the data from relation-name-1
into it. Otherwise, the COPY command acts as a REPLACE command.

RECLAIM. With the present ARIS implementation, no garbage collec-
tion techniques have been implemented to automatically reclaim space on
the disk occupied by tuple data or relation definitions that have been
deleted (see Internal Structure). To reclaim this unused space,
the

RECLAIM

command 1s used to make a new copy of the current database. When the
new database is created with the RECLAIM command, the database perfor-
mance should increase since all tuples in a relation will be stored

physically together on the disk.

End of example. The end of this interactive session is shown in

Figure A17c. In the interactive session four temporary relations were
created. Since a temporary database name was not entered at the initia-
tion of the session, the temporary relations are destroyed.

All data entered into the permanent relations are saved under the
database name, DBNAME, entered at the initiation of the session in
Figure A8,

ARIS FORTRAN Library

The ARIS system can be used directly by users in an Interactive
mode, as previously explained, or it can be used by FORTRAN application

programs. A library of subroutines 1s provided so that the interactive

115

commands can be duplicated with a call to subroutines within a FORTRAN
program. All ARIS subroutines and commands begin with the letter A to
avoid conflicts with existing programs.

Initiation/Termination and Error Processing

AOPEN. The purpose of this subroutine is to open a database that has
been created and saved with the interactive data manipulation language.
Syntax: CALL AOPEN (PERM, TEMP, ICODE)
Parameters: PERM - permanent database name, elght characters*
TEMP - temporary database name, eight characters*
ICODE - error return (see AERROR), integer
*note: the seventh and eighth characters must always be blanks
AQUIT. The purpose of this subroutine is to update all changed
pointers and to close the database files.
Syntax: CALL AQUIT (PERM, TEMP, ICODE)
Parameters: PERM - permanent database name, eight characters*
TEMP - temporary database name, eight characters*
ICODE - error return (see AERROR), integer
*note: same as above
AERROR. Each subroutine in the ARIS library has a parameter, ICODE,
that returns with a value of 0 if the subroutine was successful. If
the subroutine is not successful, the description of the error can be
printed Qlth the AERROR subroutine.
Syntax: CALL AERROR (ICODE)
Parameters: ICODE - error input code, integer
For the program database system, it is the user's responsibility
to make a copy of the database for backup. If an error destroys the

database, it can be replaced with these backup files.

116

Data Manipulation Lanquage

The data manipulation subroutines are used to input, delete, re-
trieve, and manipulate relations and tuple data.

APUTRL. The purpose of this subroutine is to identify the relation
that will be used to input tuple data with the APUTTP subroutine.

Syntax: CALL APUTRL (RELNAM, ICODE)

Parameters: RELNAM - relation name, eight or less characters

ICODE - error return, integer

APUTTP. The purpose of this subroutine is to input a tuple into a
relation defined by the APUTRL subroutine.

Syntax: CALL APUTTP (DATA, MDMDAT, ICODE)

Parameters: DATA - the data in the tuple

MOMDAT - the dimension of DATA, integer
ICODE - error return, integer

In the relation MODEL, there are four attributes, MODEL#, TYPE,
COMMENTS, and SCALE. The number of words in this tuple 1s 11 as shown
in Figure A4, In this case, the dimension of DATA would be at least 11
in the application program and MDMDAT would equal to 11.

For attributes that have been defined as variables, dimension and
type (specified by dimension equal to O when the relation was created),
the first two words for that dimension must be the number of elements
and the data type. However, if the data type of a value belng entered
is character, then the dimension is not just the number of elements.
The dimension is (1000 * number of characters per element) plus the num-
ber of elements. If the breakdown of the dimension information is
needed at a later time, the following subroutine will decipher the

information.

117

Syntax: CALL ALENDM (DATA(1i), DATA (i+1), NOCHAR, LENWRD, IDIM)
Parameters: DATA(i) - input, dimension information, integer
DATA(i+1) - imput, data type, 4 characters
NOCHAR - return, number of characters per element,
integer
LENWRD - return, computer word length of each element,
" integer
IDIM - return, total number of elements, integer

AREPTP. This subroutine inputs a tuple into a relation defined by
the APUTRL subroutine. However, unlike the APUTTP subroutine, AREPTP
replaces an old data tuple with the new data if the two tuples have
identical primary keys.

Syntax: CALL AREPTP (DATA, MDMDAT, ICODE)

Parameters: (see APUTTP subroutine)

ASELCT. Once data has been entered into the database lnteractively or
by subroutines, the data can be found by using the ASELCT subroutine which
is identical to the interactive SELECT command. The ASELCT subroutine
finds the correct tuples. These tuples can be placed in a temporary
relation or retrieved from the database into the application program.

Syntax: CALL ASELCT (RELNAM, NATT, ATT, ISATT,
NATTW, ATTW, ISATTW, VALUE, LOPT, BOPT,
TTOL, TVALUE,
NSORT, ATTS, ISATTS, IORDER,
RENAME,
NEWREL, ICNT, ICODE)

Parameters:

RELNAM - relation name, eight or less characters,

dimension (2)

NATT

ATT

ISATT

NATTW

ISATTW -

VALUE

LOPT
BOPT

TTOL

118

number of attributes retrieved, integer

4H* to retrieve all attributes, (ATT, ISATT
parameters unnecessary in this case)

attribute names, eight characters

dimension (2,NATT)

subscript of ATT, integer, dimension (NATT)
integer for element retrieval from array

4H* to retrieve all array elements

number of attributes in the WHERE clause (see
interactive SELECT command), integer

4H* to retrieve all data from defined relation,
(ATTW, ISATTW, VALUE, LOPT, BOPT, TTOL, TVALUE
parameters unnecessary in this case)
subscript of ATTW (see ISATT), integer,
dimension (NATTW)

value of attribute, type is that defined for
ATTW, dimension (NDIM), where

NATTW
NDIM = § NUMBER OF WORDS IN ATTW (I)
I=1

logical operator (EQ, NE, LT, LE, GT, GE or
CS), four characters, dimension (NATTVY)
boolean operator (OR or AND), four characters,
dimension (NATTW-1)

type of tolerance, dimensional (NATTW) if TTOL

4HNONE

4HTOL for % tolerance

TVALUE

NSORT

ATTS

ISATTS

IORDER

RENAME

4LHPTOL for + tolerance 119

4HMTOL for - tolerance

"

[}

44 for no tolerance specification for

a particular attribute in where clause

4HNONE f'or no tolerance specification

~ involved in entire where clause

value of tolerance, dimension (NATTW) if TTOL
=4HNONE

number of sort attributes, integer

= 0 for no sorting

(ATTS, ISATTS, IORDER, parameters unnecessary
in this case)

see ATT (Sorting allowed only on names in
ATT), dimension (2, NSORT)

subscript for ATTS (see ISATT), dimension
(NSORT)
ordering of relation (UP for ascending or DOWN
for descending), four characters, dimension
(NSORT)

new attribute names of selected attribute(s)
if a temporary relation is created, dimension
(2,NATT)

0 if no temporary relation is created, integer

8H , if all attribute names are not to be

changed, 8 characters
= 8H#, 1f specific attribute name is not to be

changed, 8 characters or less

120

NEWREL - selection of display, create new relation,
or hold for data retrieval GET subroutines,
= Eight characters, dimension (2)
= BHTTY - display selected tuples at the
terminal
= SH.MYDATA. - hold tuple data for GET sub-
routines

Eight character name - create and store rela-

tion with given name in temporary database
ICNT - return of the number of tuples found, integer
ICODE - error returp, integer

ASELSH. This subroutine is a shortened version of the ASELCT
subroutine. It retrieves all the attributes, limits the WHERE clause
to a 1 limits the SORT clause to 1 restriction, and holds the data for
GET subroutines.

Syntax: CALL ASELSH (RELNAM,

ATTW, ISATTW, VALUE, LOPT,
ATTS, ISATTS, IORDER,
ICNT, ICODE)

Parameters: (See ASELCT subroutine)

ASELTP. This subroutine is also a shortened version of the ASELCT
subroutine. It disallows any tolerance testing, sorting, or renaming of
attributes.

Syntax: CALL ASELTP (RELNAM, NATT, ATT, ISATT,

NATTW, ATTW, ISATTW, VALUE, LOPT, BOPT,
NEWREL, ICNT, ICODE)

Parameters: (see ASELCT subroutine)

121

AGETNX. After a relation has been retrleved with the ASELCT, or
ATSELC subroutines with NEWREL equal to .MYDATA., this routine will single
step through the tuple locations satisfying the command.

Syntax: CALL AGETNX (ICODE)

Parameters:
ICODE - return code, integer

0 tuple data location found

0 no (more) data

AGETTP. Tuple data can be retrieved into the FORTRAN program
using this subroutine preceded by a call to the AGETNX subroutine.
Syntax: CALL AGETTP (DATA, MDMDAT, ICODE)
Parameters:
DATA - tuple data
MDMDAT - dimension of DATA, integer
The dimension, MDMDAT, is the sum of the dimensions (or word length
multiplied by the dimension if attribute type is character) of all the
attributes selected (ATT). |
ASAVED. The current processed position of the tuple locations list
can be saved by a call to ASAVED. This allows for other testing without
losing tuple locations already retrieved.

Syntax: CALL ASAVED (DATA, ICODE)

Parameters:

DATA - DATA(1) = dimension of DATA (260)

file name, four characters

DATA(2)
ICODE - Error return, integer

ARSTOR. This subroutine restores the pointer to the list of tuple

locations previously saved by a call to ASAVED. A call to AGETNX will

122
begin the processing of the list again.
Syntax: CALL ARSTOR (DATA, ICODE)
Parameters: (See ASAVED subroutine.)
ADELET. The purpose of this subroutine is to delete a relation or
tuple(s) in a rélation based on a WHERE clause.
Syntax: CALL ADELET (RELNAM, NATTW, ATTW, ISATTW, VALUE, LOPT, BOPT,
ICODE)
Parameters: (See ASELCT subroutine)
NATTW = 0 for relation deletion
ADELTP, The purpose of this subroutine is to delete a single tuple
from a relation. It must be breceded by a call to the AGETNX subroutine.
Syntax: CALL ADELTP (ICODE)
Parameters:
ICODE - error return, Integer
ASSIGN. The ASSIGN subroutine is used to change an attribute value
in tuples based on the WHERE clause restrictions.
Syntax: CALL ASSIGN (ATT, ISATT, NEWVAL, TYPE, NWRDS, RELNAM, NATTVY,
ATTW, ISATTW, VALUE, LOPT, BOPT, ICODE)
Parameters: (see ASELCT for parameter description)
NEWVAL - value being assigned to ATT, must be character
fype if ATT is variable dimension and type
TYPE - type of NEWVAL (CHAR, INT, or REAL), &
characters
NWRDS - number of words in NEWVAL, integer

1 for integer and real type

n where n 1Is the next largest integer of the

length of the character string divided by &

ATTMOD. This subrout

123

ine changes the value of an attribute in a

single tuple. It must be preceded by a call to the AGETNX subroutine.

Syntax: CALL ATTMOD
Parameters: (see ASS

AJOIN. The purpose o

(ATT, ISATT, NEWVAL, TYPE, ICODE)
IGN subroutine)

f this subroutine is to }join two relations to

form a third relation based on a logical comparison of one attribute in

each relation,

t

Syntax: CALL AJOIN (

Parameters: RELNM1

RELNM2

NEWREL

ATTY

ISATT1

ATT2

ISATT2

LOPT

ICODE -
AUNION. The purpose
ible relations (see intera

append tuple data from one

RELNM1, RELNM2, NEWREL, ATT1, ISATT1, ATT2,
ISATT2, LOPT, ICODE)

first relation name, 8 characters, dimension
(2)

second relation name, 8 characters,dimension
(2)

new relation name, 8 characters, dimension

(2)

attribute in first relation, for logical
comparison, 8 characters, dimension (2)
subscript of ATT1, integer

attribute name in second relation for logical
comparison, 8 characters, dimension (2)
subscript of ATT2, integer

logical operator (EQ, NE, LT, LE, GT, GE, CS),
four characters

error return, integer

of this routine is to’combine two union-compat-
ctive UNION). The subroutine can be used to

relation to another.

124

Syntax: CALL AUNION (RELNM1, RELNM2, NEWREL, ICODSR, ICODE)
Parameters: RELNM? -~ first relation name, eight characters,
dimension (2)

RELNM2 - second relation name, eight characters,

dimension (2)

NEWREL - can be RELNM1, RELNM2, or a new relatlion name,
eight characters, dimension (2)

ICODSR

integer

0 insert data obeying all relation definition

rules

(1]

1 replace old data if primary key conflict
occurs

ICODE error return, integer

0 if relations are not union compatible
relations
AINTSC. The intersection of two (union-compatible) relations is the
set of all tuples belonging to both relations.
Syntax: CALL AINTSC (RELNM1, RELNM2, NEWREL, ICODE)
Parameters: (see AUNION)
AMINIM. The purpose of this routine is to retrieve the minimum value
from the relation for each attribute listed.

Syntax: CALL AMINIM (RELNAM, NATT, ATT, ISATT, VALUE, ICODE)

Parameters: RELNAM - see ASELCT
NATT - see ASELCT
ATT - see ASELCT
ISATT - see ASELCT

VALUE - minimum values of the attributes, dimension

(sum of the dimensions, or word length per

125
element times the dimension for character
type, of ATT)

AMAXIM. The purpose of this subroutine is to retrieve the maximum
value from the relation for each attribute listed.

Syntax: CALL AMAXIM (RELNAM, NATT, ATT, ISATT, VALUE, ICODE)

Parameters: VALUE - maximum values of the attributes, dimension

(see AMINIM)

ACOPPT. This subroutine copies the entire permanent database to
the temporary database level, replacing all current information at the
temporary level.

Syntax: CALL ACOPPT (ICODE)

Parameters: ICODE - error return, integer

ACOPTP: This subroutine copies the entire temporary database to
the permanent database level, replacing all current informatlon at the
permanent level.

Syntax: ‘CALL ACOPTP (ICODE)

Parameters: ICODE - error return, integer

ACOPDB. The purpose of this subroutine is to allow one relation
to be copied to another. If both relations involved exist, then the data
tuples from one relation replace the data tuples of the second relation.
If the second relation does not exist, then it iIs created with a schema
identical to the first relation, and then tuple replacement proceeds as
above.

Syntax: CALL ACOPDB (RELNM1, RELNM2, ICODE)

Parameters: RELNM1 - first relation name, eight characters,

dimension (2) (see COPY command)
RELNM2 - Second relation name, eight characters,

dimension (2) (see COPY command)

126

ICODE - error return, integer

Program Architecture

The architecture of ARIS is illustrated conceptually in figure A18.
The architecture is structured in several levels for two reasons. First,
the levels provide two separate packages in which one package can be
used as a library of FORTRAN subroutines that can be called from applica-
tion programs. The other package, the interactive system, consists of
a controller and a user command translator and the library. For each
interactive command, there exists a subroutine to perform the identical
function. Thus, application programs can have as much or more flexibility
than the interactive system.

A second reason for the levels is to separate the host computer
subroutines from the rest of the system to ease the conversion process
from one computer to another. This separation limits the number of ARIS
subroutines that use host subroutines to only a few. The host subroutines
required are for random access files, sorting, and the date and time.
Conversion to systems with word lengths other than 32 bits is more cumber-
some.

The MAIN level simply interprets the type of user command in order
to select the correct parsing routine. The parsing routine translates
the command and constructs the calling parameters for the command. The
command routines actually perform the desired data management function,
such as SELECT, UNION, JOIN, etc. The command routines interact with the
internal storage of the information (see INTERNAL STRUCTURE). The |
internal storage routines consist of various data structures to store
and retrieve tuple data. These internal storage routines in turn use

the random' access procedures that are provided by the host computers to

127

physically store and retrieve data from the disk. At the command level,

the SELECT routine uses the sort package provided by the host computer.

Internal Structure

The B*-tree data structure 1s used to store and retrieve data
because it maintains logarithmic performance for random access of lafge
databases and can also be used to retrieve data sequentially. Reference
A5 provides a detailed discussion of B*-trees.

All locatioﬁs of data (both relation and tuple) are determined
with the B*-tree. For each key (i.e., relation name) in the B*-tree,
there exists the disk location on which the data is stored. Basically
the B*-tree consists of three levels: B-tree (index), sequence list,
and replicate list (Fig. A19). The B-tree provides a road map to the keys
(relation name or inverted attribute values) in the linked lists. Once
the key is found in the linked list with the B-tree, the location of the
relation or tuple that is associated with that key can be determined. If
duplicates of the key exist (duplicates-allowed specification on an
inverted attribute), the replicate list provides a list of the other disk
locations of tuples associated with that key value.

Figure A20 illustrates the insertion of keys into a 8*-tree. The
maximum number of keys per block is three for this example. Insertion
starts at the linked list level where the block consists of the keys, the
disk location associated with each key, a pointer to the block previous
to the current block and a pointer to the next block. The first key to
be inserted is B (Fig. A20a). Since there are no other blocks, there are
no previous or next pointers. The next two keys are inserted in Figure
A20b. As shown in Figure 20b, the keys in a block are placed in ascending

order, Because there is no more room to insert the next key, F, in the

128

list block, the list block is split and the middle key (actually left of
middle since no middle key exists) is promoted to the B-tree as shown in
Figure A20c. The format of the B-tree block is just the key itself (no
disk location) and pointers to the leaf blocks. Note that the
next/previous pointers in the list block now exist. Figure A20d shows

the split after the keys Z and X are inserted. Another split is shown in
Figure A20e. The final two insertions not only split the linked list

block but also the B-tree block. Note that the key F is not needed in both
levels of the B-tree but is needed in both the B-tree and the list (Fig.
A20f).

To find the disk location of the tuple where the key Is equal to N,
the key N is compared with F at the root of the tree in the B-tree.
Because N is greater than F, the right pointer is followed. At the next
level, N i1s compared with L. " The key N is greater than L, so it is
coﬁpared with the next key P. Because N is less than P, the appropriate
path is followed and comparisons are made at the list level. The key N is
found and the tuple disk location of 8 is returned to be used to position
the disk so that the tuple can be read.

To find all tuples greater than N, the list is simply followed to
the right. The process of searching for the key with the B-tree and
processing the keys sequentially is called an index-sequential access.
Other logical operations are similarly processed. Thus the B¥*-tree is
a powerful data structure for relational queries.

In reality the list block also has duplicate pointers added for each
key, in order to store disk locations of tuples of attributes that have
the same Inverted attribute value. Flgure A19 illustrates the replicate

list where the replicate block consists of the disk locations for 3 keys

129

and next/previous pointers.

In the previous discussion, a block could only hold a maximum of 3
keys. For the present implementation on the PRIME computer, the node
size was optimized for relations with a iarge number of entries (greater
than 5,000). As shown in Figure A21, the block size was selected to be
120 keys. In Reference A4, the minimization is a trade of disk access
time (large for small number of keys) versus disk character transmission
time and key search time (large for large number of keys). To minimize
key search time in a block, a binary search (Ref. A2) is used instead of
the linear search in the current ARIS configuration.

For deletion of keys in the B-tree, sequence list, and replicate
1ist, a deletion flag is used instead of collapsing the blocks to
accommodate the empty space (suggested in Ref. A4). The delete flag in
the B-tree is very useful since the keys In the B-tree do not have to be
redistributed to restore balance, and separate blocks do not have to be
concatenated. Deletion is faster with the space left after a deletion
is reclaimed if possible. Problems occur with delete flags since only the
flag is set when deletion occurs. On insertion, the space left after a de-
letion is reclaimed if possible. Problems with delete flags can occur
after many deletions because searches for keys include the deleted keys.
Also, disk space is occupled by deleted keys and associated information.
To correct the problem, the RECLAIM command can be executed. This command
reads the old database and creates another with the exact same infor-
mation. This new database not only has all the delete data, keys,
and flags removed, but 1; also stores all the tuple data together
physically on the disk. This contiguousness of data can increase re-

trieval performance significantly because disk seek time is reduced.

130

The complete B*-tree structure is used for relation definition
retrieval and for tuple retrieval with relations that have at least
one inverted attribute. To retrieve tuples from a relation with an
inverted attribute based on a WHERE clause that does not include the
inverted attribute, each tuple is retrieved by using only the sequence
and replicate list of the inverted attribute. Thus every tuple in the
relation must be compared to the condition set by the WHERE clause. For
relations with no attribute inversion, only the sequence list structure
is used to store the tuple disk locations. The tuples are added to the
1list in chronological order of insertion.

Performance between B-tree and list (sequential) structures can be
compared in Table A1. To retrieve a tuple based on an attribute value
(assuming unique values), there is a 5 to 83,334 ratio of disk access
for the the B-tree versus the list structure for large number of tuples.
Even for a small database (tuple entries = 103), the performance com-
parison is favorable, There is a 2 to 1 disk size penalty for this
performance. Also, insertion of a tuple into a 8-tree can take a
significant amount of time since the B-tree must be searched on each
insertion, and there is an added overhead when a B-tree node must be
split. For storage in the list, list location of the last tuple entry
is stored in the relation table. Insertion is simple because only the
tuple location is written at this specified list location and this list
location iIs updated. For the B*-tree, the list location is determined by
searching the tree, key and tuple location is written in the list, and the
key is inserted in the tree. Thus the trades between inversion versus

non-inversion are insertion time, disk storage, and retrieval time.

131

System Architecture

The complete system architecture is presented in Figure A22, Its
concept is to separate data from the locators of the data so that
techniques to retrieve the locations can easily be changed to meet growing
requirements and to place the locations in blocks (see Internal Structure)
to increase storage/retrieval/deletion performance over other
architectures.

The data section consists of d header, a definition of each relation,
and the data for each tuple for each relation. Figure A22 illustrates
how the data would appear after a RECLAIM command.

The header (Fig. A23) is used for two purposes. First it locates
the B*-tree structure that is used to locate the relation definition
table. It not only locates the B-tree for fast relation retrieval, it
also locates the beginning (and the end) of the linked list to deter-
mine all relations in the database. The second purpose of the header is
to provide the next free location in each of the four database files.
These location values must be updated whenever new information is stored
(at the next free location in any of these files).

The relation definition table (Fig. A24) consists of the relation
name attribute descriptions and the pointers to locations of inverted
attribute(s), B-tree(s), and linked list(s). As shown in Figure A22, the
relation table points to the B¥-tree structure that in turn points to the
tuple data. Two relations are shown, one that has one inverted attribute
and another with an inversion (degenerate B*-tree).

To insert a relation, the relation definition table is developed and

stored at the next free data location. The header pointer to the relation

132

B*-tree is followed, the relation name is stored in the B-tree, the
relation name and location are stored in the linked list block split,
the storage location is determined from the next free locations in the
header and the new block is stored at this location. Finally, the header
next free locations are updated.

To store the first tuple In a relation with an inverted attribute,
the relation definition table must be retrieved by using the relation
B*-tree. A pointer to the B-tree (also to the linked-list at the same
location) is then stored in the relation definition table. The
tuple is written to the disk at the next free data location. The B-tree
is created with the attribute value and tuple location. For multiple
inversions, this B-tree creation process must be repeated for each
inversion. The relation definition table is rewritten to the disk and
the next free locations are updated and rewritten with the rest of the
header. To add the next tuple, the same procedure is followed except
that the attribute value and location are simply added to the block in
the B*-tree structure. To increase performance, buffers are employed
for each type file to reduce the number of physical disk accesses. Disk
accesses in the location files do not occur until a block is split or a
new relation is stored or retrieved. Tuple and header data storage
retrieval is always a physical disk access.

The system architecture for a temporary database is exactly ﬁhe
same as shown in Figure A22. To access the temporary database, the file
unit numbers for the four permanent database files are changed to the
- file unit numbers used for the four temporary database files. The header
is also changed for the temporary database. Once these values (4 unit

numbers and 7 header values) are changed, the temporary database is

133

processed exactly the same as the permanent database. Thus, switching
from one database to another has about the same performance as working

with one single database.

Concluding Remarks

A relational information system has‘been designed and implemented
for use as a foundation system for computer-aided design applications.
Emphasis in the design was placed on performance considerations for tuple
storage and retrieval based on simple queries using state-of-the-art data
structures. No optimization for complex queries or performance
requirements for many of the relational functions have been considered.
The system was designed for a small group of uses (10 or less) and a
relatively small amount of data (less than 10 million words) because
security, backup, and recovery systems have not been considered.

A permanent and temporary database system was developed for data
transfer from one database to another on the same computer system. Also
a dump/load feature was developed to transfer information from one com-
puter system to another.

The relational model is well suited for engineering applications
with its tabular form. Additional features like the variable length
and type attribute have been added to the model in order to ease the
interface of the model to a number of engineering application programs.

Finally, the system architecture has been designed to accept change
easily. As new requirements evolve from using the system in an engineer- -
ing environment, new data structures and models, query capability, and

data display can be added with minimal change in the system software.

134
APPENDIX REFERENCES

AlDate, C. 3. An Introduction to Database'Systems. Addison-Wesley
Publishing Company, February 1982.

AzMartin, James. Computer Data-base Organization. Prentice-Hall,
Inc., 1977.

AaCodd, E. F. "A Relational Model of Data for Large Shared Data
Banks." CACM, Vol. 13, No. 6, June 1970.

Al'Horowit:z, E. and Sahni, S. Fundamentals of Data Structures.
Computer Science Press, Inc., 1976.

ASComer, D. "The Ubiquitous B-tree." ACM Computer Surveys, Vol.
11, No. 2, June 1979,

TUPLES

NUMBER OF TUPLES 102 103 10" 105 106 107
B-TREE NUMBER OF BLOCKS (WORST CASE)} 4 34 344 } 34471 34482 344826
. NUMBER OF BLOCK ACCESSES 2 3 3 y 5 5
LINKED NUMBER OF BLOCKS 2 17 167 | 1667} 16667 | 166667
LIST NUMBER OF BLOCK ACCESSES 1 9 84 {834 | 8334 | 83334
Table A1 - Comparison of the B-tree and linked list structures
TSt \
RELATION NAME
—— ATTRIBUTES
»| TEST# | MODEL# | TUNNEL ENGINEER | COMMENTS DATE
AWWOO1 { SH10 LTPT WILHITE SHUTTLE LANDING TESTS 05/08/77
LATO - | SH10 LTPT SPENCER SHUTTLE SUBSONIC TESTS 01/05/80
0A22 SH43 16 FOOT | DIAMOND ROCKWELL SHUTTLE TEST 12/722/77
LA22 SH10 UNITARY | SPENCER SHUTTLE SUPERSONIC TEST 05/15/78
THY33 | SST3 LTPT LAMB SST SUBSONIC ENGINE TEST | 10/15/73

CARDINALITY = NUMBER OF TUPLES = 5

Fig A1 - Example of a relation

SET

a2 22 S 22222 ISR St ARt a2 2Rt

L IE IR B BRI B

WED:

AVID RELATIONAL INFORMATION SYSTEM

(ARIS)

SEP 24 1984

L IR B IR IR BE B 1

EL a2ttt ot s 2 22l 222)

INPUT DATABASE NAME(S)

>DBNAME
BEGIN INTERACTIVE SESSION
SHELP
COMMAND ABBREV PHRASE
ASSIGN - ASSI value TO at IN rel WHERE. .
CHANGE - CHAN al TO a2 IN rel
CHANGE rell TO rel2
CHANGE al IN rel TO INV
CHANGE al IN rel TO NONINV
CREATE - CREA
DELETE - DELE rel [WHERE....]
DELETE RELATION rel
INPUT - INPU rel
INPUTS - INPU ral
INPUTR rel
INTERSECT - INTE rell WITH rel2 CGIVING. .. 1
JOIN - JOIN relt AND rel2 QVER al
CEQ, LT, GT,...3 (GIVING...1]
PRINT - PRIN rel
QulT - QUIT
RECLAIM - RECL
RELATION - RELA rell
SELECT - SELE # FROM rel (WHERE... 1. tUP...)
CGIVING...] CRENAME. ..]
TREE SEARCH - TSEL # FROM rel ROOT al EQ valve
THRU a2 [BY value LEVELS]
CGIVING... 1
UNION - UNIO rell AND rel2 L(GIVING.. 1
UNIONS - rell AND rel2 L{GIVING. ..
UNIONR - rell AND rel2 CCIVING. ..)
DUMP DATA, - DuMP CErell, filenamal
SCHEMA
DUMP DATA -~ DBUMP C(L{rell: filenamel
DUMP SCHEMA -~ SDUMP CCrell, filenamel
READ IN DATA - LOAD {filenamel

SCHEMA

READ IN DATA

2QUIT

- DLOAD (Crel, filenamel
READ IN SCHEMA -~ SLOAD ([filenamel

Fig A2 - Initiation, HELP, and QUIT commands

136

HURARAAARAR AR RRAN AN AAN N AR R R ABAR RN R NN INVERSION (3; -— Y/N

* »* >N

% AVID RELATIONAL INFORMATION SYSTEM # PART OF PRIMARY KEY ~— Y/N

[[>N ~

» (ARIS) . ATTRIBUTE NAME ¢ 4)

" " ENG INEER

- » DIMENSION OF ATTRIBUTE (&)

* WED. SEP 26 1584 13:11: 59 2 >1

» » DATA TYPE (4)

JENAE IS 06 TS TS0 B OO0 T 0N 0 0 AEEANNN RAN N N >CHAR ‘

LENGTH OF EACH CHARACTER STRING
INPUT DATADASE NAME(S) >8
DBNAME INVERSION ¢ 4) — VY/N
>N

BEGIN INTERACTIVE SESSION PART OF PRIMARY KEY -— Y/N
»CREATE SN
RELATION NAME ATTRIBUTE NAME (S)
STEST . >COMMENTS
NUMBER OF ATTRIBUTES DIMENSION OF ATTRIBUTE ¢ 5)
>6 o1
ATTRIBUTE NAME ¢ 1) DATA TYPE (5)
STESTH SCHAR
DIMENSION OF ATTRIBUTE ¢ 1) LENGTH OF EACH CHARACTER STRING
1 o24
DATA TYPE (1) ATTRIBUTE NAME (&)
CHAR A SDATE
LENGTH OF EACH CHARACTER STRING DIMENSION OF ATTRIBUTE (&)
>8 >t
INVERSION ¢ 1) —— Y/N DATA TYPE (&)
Y »CHAR
PART OF PRIMARY KEY —— Y/N LENGTH OF EACH CHARACTER STRING
N 8
ATTRIDUTE NAME (2) INVERSION (&) -= Y/N
SHODEL# N
DIMENSION OF ATTRIBUTE (2) ?:RT OF PRIMARY KEY -- Y/N
3 2
DATA TYPE (2) RIS R RIS RS S 20
= CHAR » ’ »
LENGTH OF EACH CHARACTER STRING » RELATION TEST »
8 * »
INVERSIGN ¢ 2) — Y/N EX2 2RISR S X X)
N
PART OF PRIMARY KEY - Y/N ATTRIBUTE TYPE NWORDS PRIMARY KEY INVERSION
N TESTH ¢ 1) CHAR® 8 2 N Y
ATTRIBUTE NAME (3) MODEL# (1) CHAR» 8 2 N N
S TUNNEL TUNNEL. (1) CHAR» 8 2 M N
DIMENSION OF ATTRIBUTE (3 ENG INEER (1) CHARe 8 2 M N
a1 COMMENTS(1) CHAR» 23 & N ™
paTa TYPE (3) DATE < 1) CHAR® 8 2 N N
»CHAR
LENGTH OF EACH CHARACTER STRING 0 ENTRIES PRESENTLY

"8
Fig A3 - Initiate database and enter relation TEST definition

LET

SCREATE

RELATION NAME

SHODEL

NUMBER OF ATTRIBUTES

=4

ATTRIBUTE NAME (1)

L

DIMENSION OF ATTRIBUTE ¢ 1)
3 |

DATA TYPE (1)

CHAR

LENGTH OF EACH CHARACTER STRING

-8

INVERSION ¢ 1) - Y/N

N (YIRS ET S AL R

PART OF PRIMARY KEY -- Y/N * »

N » RELATION MODEL »

ATTRIBUTE NAME ¢ 2) » .o

»TYPE YT I YIS YE ISR N)

DIMENSION OF ATTRIDUTE (2)

1 ATTRIBUTE TYPE NUORDS PRIMARY KEY INVERSION
DATA TYPE (2) Ml (1) CHARs 8 2 N N
ZCHAR TYPE (1) CHARs B8 2 N N
LENGTH OF EACH CHARACTER STRING COMMENTS(1) CHAR= 23 b N N
pX - SCALE 4 1) REAL 1 N N
INVERSION (2) -~ Y/N

N O ENTRIES PRESENTLY

PART OF PRIMARY KEY —— Y/N
N

ATTRIBUTE NAME (3)
COMMENTS

DIMENSION OF ATTRIBUTE ¢ 3)
Tl

DATA TYPE (3)

" CHAR

LENGTH OF EACH CHARACTER STRING
24

ATTRIBUTE NAME (4)

~SCALE

DIMENSION OF ATTRIBUTE ¢ 4}
.

DATA TYPE (4)

ZREAL

INVERSION ¢ 4) - Y¥Y/N
-N

PART (OF PRIMARY KEY -—- Y/N
N

Fig A4 - Enter relation MODEL definition

8€E1

SCREATE

RELATION NAME

STEST-RUN

NUMBER OF ATTRIBUTES

.8

ATTRIBUTE NAME ¢ 1)

>TESTH

DIMENSION OF ATTRIBUTE (1)
3 |

DATA TYPE (1)

2 CHAR

LENGTH OF EACH CHARACTER STRING
-8

INVERSION « 1 — Y/N

PART OF PRIMARY KEY —— Y/N
N

ATTRIBUTE NAME ¢ 2)

SRUN#

DIMENSION OF ATTRIBUTE (2)
=1

DATA TYPE (2)

~CHAR :
LENGTH OF EACH CHARACTER STRING
>8

INVERSIDN (« 2) — Y/N

PART OF PRIMARY KEY ~-- Y/N

SN

AITRIBUTE NAME (3J)

COMMENTS

DIMENSION OF ATTRIBUTE (3)

R |

DATA TYPE ()

>CHAR

LENGTH OF EACH CHARACTER STRING
6

ATTRIBUTE NAME ¢ 4)

CONF16

DIMENSION OF ATTRIBUTE (4)

ot

DATA TYPE (4)

T CHAR

1.LENGTH OF EACH CHARACTER STRING
8

Fig A5 - Enter relation TEST-RUN definition

INVERSION ¢ 4) — V/N
ON .

PART OF PRIMARY KEY -~ Y/N
>N

ATTRIBUTE NAME (5)

>ct

DIMENSION UF ATTRIBUTE ¢ 5)
>1

DATA TYPE (5)

“REAL

IMVERSION ¢ 5) —- Y/N
>N

PART OF PRIMARY KEY —— Y/N
>N

ATTRIBUTE NAME (&)

>c2

DIMENSION OF ATTRIBUTE (&)
>1

DATA TYPE (&)

“REAL

INVERSION ¢ &) — Y/N
>N

PART OF PRIMARY KEY -- Y/N
N

ATTRIBUTE NAME ¢ 7)

>POLAR

DIMENSION OF ATTRIBUTE ¢ 7)
31 ,

DATA TYPE ¢ 7)

>CHAR

LENGTH OF EACH CHARACTER STRING
-3

INVERSION ¢ 7) — Y/N
Y

PART OF PRIMARY KEY -~ Y/N
>N

ATTRIBUTE NAME (8&)

MACH

DIHENSIUN OF ATTRIBUTE (@)

DATA TYPE (8)

“REAL

INVERSION ¢ 8) ~= Y/N
N

PART OF PRIMARY KEY -- Y/N
>N

6¢€T

ATTRIBUTE
TEST# (1)
RUN# (n

COMMENTS(19
CONFIG (1

Ci (1)
c2 (1
POLAR (1)
MACH { 1)

O ENTRIES

RAARRARAZARNDERARBRARAR S

» »
RELATION TEST-RUN »
- -

L2222 222222222222]s R

TYPE NWORDS PRIMA
CHAR® 8 2
CHAR® 8
6
8

M

CHAR=® 1
CHAR#
REAL
REAL
CHAR#s 8
REAL

S TRy U X

PRESENTLY

Fig A5 (con't)

RY KEY INVERSION

N
N

zzzzZzZ

N

z2ZZ

N

-4

N

o¥1

+CREATE

RELATION NAME

>TDATA

NUMBER OF ATTRIBUTES

4

ATTRIBUTE NAME (1)

STESTH

DIMENSION OF ATTRIBUTE ¢ 1)
>1

patA TYPE (1)

2CHAR

LENGTH OF EACH CHARACTER STRING

.8

INVERSION ¢ 1) —— Y/N
N

PART OF PRIMARY KEY -- Y/N
N

ATTRIBUTE NAME (2)

SRUN#

DIMENSION OF ATTRIBUTE ¢ 2)
>1

DATA TYPE (2)

>CHAR

LENGTH OF EACH CHARACTER STRING
-8

INVERSION ¢ 2) - Y/N
N

PART OF PRIMARY KEY -- Y/N
N

ATTRIBUTE NAME (3)

SPOINT

DIMENSION OF ATTRIBUTE (3)
b3 |

DATA TYPE (J)

2INT

INVERSION (3) — Y/N
>N

PART OF PRIMARY KEY ~- Y/N
>N

ATTRIBUTE NAME ¢ 4)

~DATA

DIMENSION OF ATTRIBUTE (4)
|

DATA TYPE (4)

>REAL.

a2 a2 222 22222 T XYY SN

*

»*

* RELATION TDATA »

L]

*

TR BRI BN RN RN R

ATTRIBUTE TYPE
TESTH (1) CHARs 8
RUN# ¢ 1) CHAR» 8
POINT (1) INT
DATA (4) REAL

O ENIRIES PRESENTLY

Fig A6 - Enter relation TDATA definition

NWORDS PRIMA
2

s DN

RY KEY INVERSION

IZZTZ

zZZZZ

™l

SREL.ATION >CHANGE MM TO MODEL# IN MODEL

ARALURRARARARAARARR R ANRN N >CHANGE MODELS® IN MODEL TO U;N
* ») .
% RELATIONS IN DATABASE #« -° SDRELATION MODEL
[»
NARERENN RN ARNE N WSS ARNN R [IIZEETTET TR TS LT Y
RELATION ™MODEL » *
RELATION TDATA #* RELATION MODEL »
RELATION TEST - »
RELATION TEST-RUN L2222 TTTZIETYS T LT EE)
#an NO RELATIONS IN TEMPORARY DATADASE ##%x
ATTRIBUTE TYPE NWORDS PRIMARY KEY INVERSION
ZRELATION MODEL MODELS® (1) CHAR» 8 2 N Y
TYPE (1) CHARe: 8 2 N N
ARRERARAREARAARARNRRA S COMMENTS(1) _CHAR» 24 & N N
n L SCALE { 1) REAL 1 N N
* RELAVION MODEL «
1] [. O ENTRIES PRESENTLY
RAARARARRRRRBERUNRXNRNR
ATTRIBUTE TYPE NWORDS PRIMARY KEY INVERSION >QUIT
14 (1) CHARx 8 2 N N
TYPE [{ 1) CHARs 8 2 N N
COMMENTS(1) CHAR# 24 6 N N
SCALE (1) REAL 1 N N

O ENTRIES PRESENTLY

Fig A7 - CHANGE and RELATION commands and terminate example session

(42

PRI S RSS2 R 21 SRR RIS S LR 2 2 2

» »
- AVID RELATIONAL INFORMATION SYSTEM »
" »
» (ARIS) »
» »
» »
* WED, SEP 26 1984 13:22: 32 »
" »

U T TSR T O I BRI B 0 I B R R
INPUT DATABASE NAME(S)
>DBNAME
BEGIN INTERACTIVE SESSION

>INPUT TEST

TYPE $END TO RETURN TO MAIN PROCRAM

TEST# ¢ 1) - 8 CHARACTERS
21001

MODELS (1) - 8 CHARACTERS
>SH10

TUNNEL (1) - 8 CHARACTERS
OLTPT

ENG INEER(1) - 8 CHARACTERS
JHILHITE

COMMENTS(1) - 24 CHARACTERS
DSHUTTLE LANDING TEST

DATE (1) - 8 CHARACTERS
205704777

TEST# (1) - B8 CHARACTERS
>$END

"Fig A8 -~ Initiate session and enter a tuple into relation TEST

En1

>DLOAD TEST AWTEST

2PRINT TEST

a2 22222122242 2222

» -
RELATION TEST -
» »

LIRSS R 2222222 8

TEST# MODEL # TUNNEL ENGINEER COMMENTS DATE
AWO01 SH10 LTPT WILHITE SHUTTLE LANDING TEST 05704777
LA22 SH10 UNITARY SPENCER SHUTTLE SUPERSONIC TEST 05/15/78
LA70 SH10 LTPT SPENCER SHUTTLE SUBSONIC TEST 01/05/80
0A22 SHA3 16 FOOT DIAMOND ROCHKHWELL SHUTTLE STUDY 12/22/777
T4433 S873 LTPT LAMB SST SUBSONIC ENGINE TEST 10/15/73
>RELATION TEST
ARRAARARBARRRURRRRRR R
] -
RELATION TEST »
* []
EIT T2 AT IR ZE Y]
ATTRIBUTE TYPE NWORDS PRIMARY KEY INVERSION
TEST# (1) CHAR® 8 2 N Y
MODEL# (1) CHAR® 8 2 N N
TUNNEL (1) CHAR+ B8 2 N N
ENG INEER(1) CHAR®* 8 2 N N
COMMENTS(1) CHAR» 24 6 N N
DATE ¢ 1) CHAR® 8 2 N N

S5 ENTRIES PRESENTLY

Fig A9 - Load tuple data into relation TEST from an external file

7l

>DLOAD MODEL AWMODEL

SPRINT MODEL
(222222 XIS st 2 gl
« *
* RELATION MODEL #
* *
L2 2E I RTITRLILL LS L R
MODEL # TYPE COMMENTS SCALE
SH10 SHUTTLE ROCKWELL HIGH FIDELITY 1. 00000E-2
SHa3 SHUTTLE ROCKWELL HICH FIDELITY 3. 00000E-2
SS5T3 sSY MIXED-MODE JET ENGINE MO 5. 00000€-2
>DLOAD TEST-RUN AWT-R
SPRINT TEST-RUN
ARAAXRAUS AR ARRERARE N
* L]
RELATION TEST-RUN
L 3 L]
HARARARARAABRBRAXERR Y
TEST# RUN# COMMENTS CONFIC c1 ca POLAR MACH
LA70 1 BODY ALONE B 0. 00000E+O 0. 0C000E+0 ALPHA 4. 00000E~-1
LA70 2 WING-BODY BW 0. 00000E+0 0. 00000E+0 ALPHA 4. 00000E~-1
1.A70 3 ELEVON AT 10 DEG BH 0. 00000E+0 0. 00000E+0 ALPHA 4. 00000E~-1
LA70 a RUDDER AT 2 DECR BW1 0. 00000E+0 0. 00000E+0 ALPHA 4. 00000E-1
0AR2 1 WING-BODY-TAIL BWT 0. 00000E+0 0. 00000E+0 ALPHA 9. 90000E-1
oAz 2 WING-BODY-TAIL BWT 0. 0000VE+0 0. 0000CE+0 BETA 1. D2000E+0
LAZ2 1 WING 1 BHT 0. 0000VE+O 0. 00000E+0 ALPHA 2. 43000E+0
LAZ2 2 WING #2 BWT 0. 00000E+0 0. 00000E+0 ALPHA 2. 45000E+0
LAZ2 3 WING 1 BHT 0. 0000NE+0 0. 00000E+0 ALPHA 2 45000E+0
LAzZ2 a WING #2 BWT 0. DODDOE+0 0. 00Q00E+0 ALPHA 2 45000E+0
74433 2 ENCINE AT SO%Z TH BWT 0. 00000E+0 0. 00000E+0 ALPHA 3. 00000E-1
14433 3 ENGINE AT 100% T BWT 0. 00000E+0 0. 0VO0O0E+0 ALPHA 3. 00000E-1

Fig Al10 ~ Load tuple data into relations MODEL and TEST-RUN from external files

Y1

>DLOAD TDATA AWDATA

SPRINT TDATA

AL ZIIRT TSRS R

*

+ RELATION TDATA

*

*
SARARARNRRREARANER R RRN N

TEST# RUNS POINT DATA(1) DATA(2) DATA(3) DATAtA)

LA70 1 1 -2. 20000E+0 0. 00000E+O0 -1. 8Q000E-1 8. 90000e-2
LA70 1 2 -6. 00000E~-2 0. 00000E+0O ~4. 00000E-2 8. J30000E-2
LA70 1 3 4. 40000E+0 0. 000Q0E+0O 2. 10000E-1 9. 70000E-2
LA70 1 4 8. 80000E+0 0. 00000E+0 4. Q0000E-1 1. 40000-1
LA70 1 S 1. 24000€+1 0. 00000E+O0 5. 500001 2. 01000E~-1
LA70 2 1 -2. 30000E+0 0. 00000E+0O ~2. S50000E-1 9. 40000E-2
LA70 2 2 -9%. 00000E-2 0. OD000E+O ~2. 00000E-2 8. 70000e-2
LA70 2 3 4. 20000£+0 0. 00000E+0 3. 30000E-1 1. 01000E-¢
LA70 2 4 8. 70000E+0 0. 00000E+0Q 4. 80000E-1§ t. 44000E-1
LA70 2 S 1. 23000E+1 Q. 00000E+O 6. 20000E-1 2. 05000£-1
LA70 3 1 -2. 70000E+0 0. 00000E+0 ~3. S0000E-1 9. 700006-2
LA70 3 2 0. Q0000E+0 0 00000E+0 8. 00000E-2 9. 10000E-2
LA70 3 3 4. 60000E£+0 0 00000E+0O 4. 30000E-1 1. 05000&e~1
LA70 3 4 8. 20000E+0 0 00000E+O 5. 80000E-1 1. 48000E-1
LA70 3 92 1. 21000€+1 0. 20000E+0 ,7- 20000E-1 2. 09000E-1
LA70 4 1 -2. 70000E+0 0 00000E+O -3. S0000E~-1 9. 70000E-2
LA70 4 2 0. 00000E+0 0 00000E+0 8. 00000E-2 9. 10000E-2
LA70 4 3 4. 60000E+0 0. 00000E+0 4. 30000E-1 1. 050006-1
LA70 aq 4 8. 20000E+0 0. 00000E+0 5. 80000E-1 1. 4B000E-1
LA70 4 S5 1. 21000E+1 .0. 00000E+0O 7. 20000E-1 2. 090006 -1
0A22 1 1 0. Q0000E+O0 0. 0000CE+O -4, 20000E-2 8. 30000E-2
oA22 t & 2. 00000€+0 0. 000Q0E+O 9. 70000E-2 8. 56000E-2
0A22 1 3 4. 00000E+0 0. 00000E+0O 2. 07000e-1 9. 44000E-2
0A22 1 4 8. 00000E+0 0. 00000E+O 2. 794000e-1 1. 13800E~-1
0a22 pod 1 0 00000E+0 0. 00000E+0 -4. 20000E-2 8. 30000e-2
0A22 2 a2 0. O0D00E+0O 2. 00000E+0 9. 70000e-2 8. 56000E-2
0A22 2 3 0. O0000E+0 4. 00000E+0O 2. 07000€-1 9. b4000F -2
0AZ22 2 4 0. 00000E+0 4. 00000E+0 2. 94000E-1 1. 13800E-1
LA22 1 1 0. 00000E+0 Q. 000Q0E+0 -2. J0000E-2 6. 40000E-2
LA22] 2 1. O0000E+1 0. 00000E+0 4. 8Y000E-1 1. 10000 -1
LAZZ2 2 1 0. 00000E+0 0. 00000E+0 -2. 40000E-2 F 90000£-2
LA22 < 2 1. O0O000E+1 0. 00000E+0 5. Q3000E-1 9. 70000 -2
LA22 3 1 0. 00000E+0 Q. 00000E+0 2. 00000E-3 0. 00000E+0
LA22 3 2 1. 0000Q0E+1 0. 00000E+O 5. 04000E-1 1. 21000k-1
LAZ22 4 1 0. 00000E+O 0. 00000E+O 4. 00000e-3 &. 10000E-2
LA22 4 2 1. O0000E+1 0. 00000E+0 5. S4000E~1 1. 01000E~1
T4433 1 1 3. 00000E+0 0. 00000E+0O 3. 25000e-1 2. 930000E -2
T4433 2 1 3. 00000E+0 0. 00000E+0 3. 25000e~-1 2. 20000E-2

Fig All - Load tuple data into relation TDATA from the external file AWDATA

9%l

2SELECT # FROM TEST

TESTH

X2 RE2 22 X222 2222 2222 4

» »
RELATION TEST *
' »

L1222 i X232 2222 Ls)

MODEL# TUNNEL

ENGINEER COMMENTS DATE
AUW001 SH10 LTPT HILHITE SHUTTLE LANDING TEST 05/04/77
LA22 SH10 UNITARY SPENCER SHUTTLE SUPERSONIC TEST 05715778
LA70 SH10 LTPT SPENCER SHUTTLE SUBSONIC TEST 01/0%/80
0A22 SHA3 16 FOOT DIAMOND ROCKWELL SHUTTLE STUbY 12/22/77
74433 88713 LTPT LAMB SST SUBSONIC ENGINE TEST 10/715/73
SPRINT TEST
TRAAN AR RRER AR RANR R
» *
* RELATION TEST -
» »
LTI YT RS TTAS AT ST S
TESTH# MODEL # TUNNEL ENGINEER COMMENTS DATE
AWO01 SH10 LTPT WILHITE SHUTTLE LANDING TEST 05/04/77
LA22 SH10 UNITARY SPENCER SHUTTLE SUPERSONIC TEST 05/15/78
LA70 SH10 LTPT SPENCER SHUTTLE SUBSONIC TEST 01/05/80
0a22 SHA3 16 FOOT DIAMOND ROCKHWELL SHUTTLE STUDY 12/22/77
T4433 SS73 LTPT L.AMB SST SUBSONIC ENGINE TEST 10/15/73

Fig Al2 - Example of the default SELECT command

L

a) >SELECT TESTS® FROM TEST WHERE ENGINEER EQ SPENCER &
> OR MODELW® EQ SHI0

(2222222 222X 11 X222y 4

. .
« RELATION TEST .
) .
SENeEssRRRIEEISRRENNS
TESTH
AWDOO01
LA2
LA70 :

b) MSELECT TESTH.RUNS,MACH FROM TEST-RUN WHERE MACH EG 1 TOL .5

sasecsensesacesssssace
- -
RELATION TEST-RUN e
. .

CEEBCNSNIRINENDALSS S

TESTH RUN# HACH

0A22 1 9. 900006~
0A22 2 1. O2000E+0
C) MSELECT « FROS TEST WHERE ENCINEER EQ SPENCER UP TESTH

S00Nssstasanoecatnees

. -

* RELATION TEST . -

. -

[IITYTITYT YR RYY YT Y S
TESTS RODEL® TUNNEL ENCINEER COMENTS DATE
LA22 SH10 UNITARY SPENCER SHUTTLE SUPERSONIC TEST 03/15/78
LA70 SH10 LTPT SPENCER SHUTTLE SUBSONIC TEST 01/05/80

d) YSELECT POINT.DATA(1) FRON TDATA WHERE TEST® EQ LA70 AND RUN® EQ 1 CIVINC LA701 RENANE %.ALPHA

SMPRINT LA701
cesssscscrnsnsesnsese

L -
* RELATION LA701 L4
- -

eescssnssespnsesnosnse

POINT ALPHA
1 ~-2. 20000€+9
2 -&. 00000E-2
3 4. 40000c+0
L) 6. 80000E+0
S 1. 280006 +1

Fig Al13 - Examples of the SELECT command

gyl

a) >PRINT TEST

lilllliilﬂﬁ**llé;‘li’

RELATIDN TESY
*

*
*
*

RUARBURERRBRRARARRRRARS

TEST# MODEL # TUNNEL ENGINEER COMMENTS DATE
AW001 SH10 LTPT WILHITE SHUTTLE LANDING TEST 05/04/77
LA22 SH10 UN1TARY SPENCER SHUTTLE SUPERSONIC TEST 05/15/78
LA70 SH10 LTPT SPENCER SHUTTLE SUBSONIC TEST 01/05/80
oA22 SHA3 16 FOOT DIAMOND ROCKWELL SHUTTLE STUDY 12/722/77
T4433 88713 LTPT LAMB SST SUBSONIC ENGINE TEST 10715773
SDELETE TEST WHERE TEST# EG T4433
SPRINT TEST .
HENM AN HRERERNRERNR R
. -
» RELATION TEST *
»* *
I TS R YIRS TZ R 22T Y]
TEST# MODEL# TUNNEL ENG INEER COMMENTS DATE
AWOO1L SH10 LTPT WILHITE SHUTTLE LANDING TEST 05/04/77
Laz2z SH10 UNITARY SPENCER SHUTTLE SUPERSONIC TEST 05/15/78
LA70 SH10 LTPT SPENCER SHUTTLE SUBSONIC TEST 01/0%/80
0oA22 SHA3 16 FOOT DIAMOND ROCKHELL SHUTTLE STUDY 12722777
b) >ASSIGN WILHITE TO ENGINEER IN TEST WHERE TEST# EQ LAZ2
*PRINT TEST
RAARRAREEREA RN AR N
L} »
RELAVION TEST]
* »
RERRANER AR RABERARRR N
TEST# MODEL # TUNNEL ENGINEER COMMENTS DATE
AWCO1 SH10 LTPT WILHITE SHUTTLE LANDING TEST 05/04/77
LAZ22 SH10 UNITARY WILHITE SHUTTLE SUWPERSONIC TEST Q5/15/78
LA70 SH10 LTPT SPENCER SHUTTLE SUBSONIC TEST 01/05/80
0AZ22 SH43 16 FUOT DIAMOND ROCKWELL. SHUTTLE STUbY 12722777

Fig Al4 - Examples of the DELETE and ASSIGN commands

671

>SELECT MODEL#® FROM MODEL WHERE TYPE EQ SHUTTLE GIVING TEMP

>2JOIN TEMP AND

SPRINT TEMP2

TEST OVER MIDEL# GIVING TEMP2

(22322222 222222222222

#*

RELATION TEMP2
»

*
L 3
*

EZIXE 22 R 2222222z

TESTH MODEL# TUNNEL ENGINEER COMMENTS DATE
AW001 SH10 LTPT WILHITE SHUTTLE LANDING TEST 05/04/77
0A22 SHA3 16 FOOT DIAMOND ROCKWELL SHUTTLE STUDY 12/722/77
>SELECT ENGINEER FROM TEMP2 WHERE TUNNEL EQ ‘14 FOOT’
USRS RN AN RAER N
»]
RELATION TEMP2 L]
* »
RERARARBRBRRRRER RARN R
ENGINEER
D1AMOND
>JOIN TEST AND TEMP OVER MODEL¥ GIVING TEMPI
>PRINT TEMP3
HHBN AR R RE NN RRARE
- *
RELATION TEMP3 -
-) »
RRRRERRRRARRARERRARR R
TEST# TUNNEL ENGINEER COMMENTS DATE MODEL #
AWOO1 LTPT WILHITE SHUTTLE LANDING TEST 05/704/77 SH10
LA22 UNITARY WILHITE SHUTTLE SUPERSONIC TEST 05/15/78 SH10
LA70 LTPT SPENCER SHUTTLE SUBSONIC TEST 01/05/80 SH10
0A22 16 FOOT DI1IAMOND ROCKWELL SHUTTLE STUDY 12/22/77 SHAS

Fig Al5 -~ Example of the JOIN command

0s1

a) >SELECT ENGINEER FROM TEMP3 WHERE TUNNEL EQ LTPT GIVING TEMPS
>SELECT ENGINEER FROM TEMP2 WHERE TUNNEL EQ LTPT GIVING TEMP4
SUNION TEMPS AND TEMPA ‘

ENGINEER ;

WILHITE
SPENCER
WILHITE

b) >INTERSECT TEMP5 WITH TEMPA
ENGINEER

WILHITE

ipted attributes
Fig Al6 - UNION and INTERSECT commands and an example of using subscrip

161

a) >MIN MACH IN TEST-RUN

HARRAARARRARERBRAERRRR R

»* »
% RELATION TEST-RUN =
» »

RARRARAR AR RARRERRE R

MACH

3. 00000E-1

b) :MAX MACH IN TEST-RUN

ey YT TSI EER SR L2 00
L

L]

RELATION TEST-RUN *
"]
RAANARARRARURRRERRARE

MACH

2. AS000E+0

Fig Al17 - MIN, MAX, and RELATION commands and termination of the session

C) >RELA

f 222 A2 222 22 XS 2228 YY)

»

*

RELATIONS IN DATABASE »

»

IR A NN RN R R

RELATION MODEL
RELATIDN TDATA

RELATION

RELATION TEST-RUN

TEST

I IE 030 90300 0 0 R 3 0

»

»

RELATIONS IN TEMPORARY +
» DATABASE

»

»
»

I I3 30 3 R 20 0 3 00

RELATION
RELATION
RELATION
RELATION
RELATION
RELATION

>QUIT

LA701
TEMP

TEMP2
TEMP3
TEMP4
TEMPS

251

ARIS

SOFTWARE

HOST COMPUTER

SOFTWARE

RANDOM ACCESS

FILES

MAIN ‘

[PARSING

INTERNAL

STORAGE

SORTING

TIME

DATE

PROGRAM

LIBRARY

Fig A18 - ARIS program architecture

INTERACTIVE

SYSTEM

€Sl

@B-TREE

l1X,001Z,50 |

1] 12 [13 [fe>{[70] 1 [l @REPLICATE

LIST

Fig A19 - Schematic of the internal structure

@ SEQUENCE

LIST

KA

[e. ez Jr.5]

a) Insert: (B,1) b) Insert: (P,3), (G,2)

f) Insert: (C,9), (E,10)

*
Fig A20 - Progressive growth of the B -tree with insertions

119

CPU and DISK

TIME

2.0

1.8

].6

1.4

1.2

1.0

TIMING IS RELATIVE TO A 120 KEY BLOCK SIZE

INSERTING 10,000 KEYS TOOK 283 SECONDS

| | | J

50 100 150 200

BLOCK SIZE, KEYS PER BLOCK

Fig A21 - Block size optimization

9¢1

@ POINTER FILES

157

@ DATA FILE

HEADER

RELATION
NAMES

RELATION TABLE
#1

r y]
W Wyt

TUPLE DATA

3

INVERTED
ATTRIBUTE

TUPLE -1~

LOCATIONS 1

RELATION TABLE
‘ t2

POINTER FILES

B~TREE JAN TUPLE

TUPLE DATA

LOCATIONS

2

SEQUENCE LIST [|

REPLICATE LIST ()

Fig A22 - Access structure architecture

VAN

f = LOCATION OF

1RELATION NAME

B-TREE

1 BEGINNING OF
RELATION NAME

SEQUENCE LIST

fENDING OF
RELATION NAME

SEQUENCE LIST

NUMER OF
LEVELS

IN B-TREE

NEXT FREE LOCATION IN

B-TREE

FILE

SEQUENCE LIST

FILE

REPLICATE LIST

FILE

DATA

FILE

Fig A23 - Header record contents (8 words)

8s1

RELATION NAME

NUMBER OF ATTRIBUTES
NAME
TYPE
DIMENSION
NUMBER OF CHARACTERS

NUMBER OF ATTRIBUTE INVERSIONS (50 MAXIMUM)
ATTRIBUTE NUMBER)
LOCATION OF B-TREE
LOCATION OF BEGINNING OF SEQUENCE LIST
LOCATION OF ENDING OF SEQUENCE LIST
LEVELS IN B-TREE
DELETION FLAG

NUMBER OF ATTRIBUTES IN PRIMARY KEY (50 MAXIMUM)
ATTRIBUTE NUMBERS

NUMBER OF WORDS IN A TUPLE

NUMBER OF ENTRIES

Fig A24 - Relation table contents (558 words)

6S1

