
www.manaraa.com

INFORMATION TO USERS

This reproduction was made from a copy o f a document sent to us for microfilming.
While the most advanced technology has been used to photograph and reproduce
this document, the quality of the reproduction is heavily dependent upon the
quality o f the material submitted.

The following explanation o f techniques is provided to help clarify markings or
notations which may appear on this reproduction.

1.The sign or “ target” for pages apparently lacking from the document
photographed is “ Missing Page(s)” . If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages. This
may have necessitated cutting through an image and duplicating adjacent pages
to assure complete continuity.

2. When an image on the film is obliterated with a round black mark, it is an
indication of either blurred copy because o f movement during exposure,
duplicate copy, or copyrighted materials that should not have been filmed. For
blurred pages, a good image o f the page can be found in the adjacent frame. If
copyrighted materials were deleted, a target note will appear listing the pages in
the adjacent frame.

3. When a map, drawing or chart, etc., is part o f the material being photographed,
a definite method o f “sectioning” the material has been followed. It is
customary to begin filming at the upper left hand comer of.a large sheet and to
continue from left to right in equal sections with small overlaps. If necessary,
sectioning is continued again-beginning below the first row and continuing on
until complete.

4. For illustrations that cannot be satisfactorily reproduced by xerographic
means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. These prints are available upon request from the
Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases the best
available copy has been filmed.

Universe
M k S S ilm s

International
300 N. Zeeb Road
Ann Arbor, Ml 48106

www.manaraa.com

www.manaraa.com

8518287

W ilhite, Alan W ade

FOUNDATION TECHNIQUES FOR THE DEVELOPMENT OF A COMPUTER-
AIDED ENGINEERING SYSTEM FOR AEROSPACE VEHICLES

North Carolina State University at Raleigh PH.D. 1985

University
Microfilms

International 300 N. Zeeb Road, Ann Arbor, Ml 48106

www.manaraa.com

www.manaraa.com

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy.
Problems encountered with this docum ent have been identified here with a check mark V .

1. Glossy photographs or p a g e s______

2. Colored illustrations, paper or print______

3. Photographs with dark background______

4. Illustrations are poor copy______

5. Pages with black marks, not original copy____

6. Print shows through as there is text on both sides of page______

7. Indistinct, broken or small print on several pages \ /

8. Print exceeds margin requirem ents______

9. Tightly bound copy with print lost in spine______

10. Computer printout pages with indistinct print______

11. Page(s)___________ lacking when material received, and not available from school or
author.

12. Page(s) 47 seem to be missing in numbering only as text follows.

13. Two pages num bered_____________. Text follows.

14. Curling and wrinkled p ag es______

15. Other__ .

University
Microfilms

International

www.manaraa.com

www.manaraa.com

FOUNDATION TECHNIQUES FOR THE DEVELOPMENT

COMPUTER-AIDED ENGINEERING SYSTEM

FOR

AEROSPACE VEHICLES

by

ALAN W. WILHITE

A thesis submitted to the Graduate Faculty of
North Carolina State University

in p a r t ia l fu lfillm ent of the
requirements for the Degree of .

DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING

u .j. <Ajhl

OF A

Doctor of Philosophy

RALEIGH

1 9 8 5

APPROVED BY:

Advisory Committee Chairman

www.manaraa.com

BIOGRAPHY 1

Alan W. W ilh ite was born in Portsmouth, Virginia, on December 7,

19*19. He was reared in Norfolk, V irg in ia , and graduated from Norview

High School in 1968. He was a co-op student with NASA Langley Research

Center while attending North Carolina S ta te U n iv e rs i ty . He graduated

w ith a B a ch e lo r o f Science degree in 1973 and received a Masters

Degree in Flight Sciences from George Washington University in 1976.

The author has been working in the Space Systems Division a t NASA

Langley since 1973. He has published 26 technical papers in the a reas

of aerodynamics, f l i g h t performance, propulsion in tegration , vehicle

design, optimization, and computer-aided design. His work has been in

support o f the Space S h u t t le , advanced launch v e h ic le , and o rb i ta l

tran sfe r vehicle technology programs.

He is p re se n t ly computer-aided design group leader in the Vehicle

A n a ly s is Branch and i s a member o f th e AIAA C o m p u te r -A id e d

Design/Computer-Aided Manufacturing (CAD/CAM) technical committee.

www.manaraa.com

ACKNOWLEDGEMENTS

I wish to thank the Program In tegra tion Team (PIT) for th e ir sup

port in developing my dream. In p a r t ic u la r , I would l i k e to thank Dr.

James Schwing o f Old Dominion University for h is guidance and support

and for h is invaluable research in the user in te rface tha t has rep laced

the one p resen ted in th i3 d i s s e r t a t i o n . Also, thanks are extended to

Vicki Crisp of the Kentron Corporation for her h e lp fu l su g g e s t io n s and

th e coding and re -co d in g of ARIS and to Kenny Jones of the Computer

Science C orpora tion fo r developing the program communication p r e

com pile r . S p e c ia l thanks a re extended to Dr. Fred Dejarnette and Dr.

John Perkins for th e ir guidance and constant reminders of the deadlines.

F in a l ly , I would l i k e to thank my w ife , Pat, and children, Jason and

Adam, for th e ir support and understanding.

www.manaraa.com

iv

TABLE OF CONTENTS

Page

INTRODUCTION ... 1

ENGINEERING DESIGN AND COMPUTER AUTOMATION .. 5

PAST APPROACHES TO COMPUTER-AIDED ENGINEERING 9

Geometry ... 9
Data Communication and Program Coupling’ .' .’ 9
Executive Management/User In terface 14

PERSPECTIVE OF CURRENT DATABASE MANAGEMENT SYSTEMS 16

PRESENT COMPUTER-AIDED ENGINEERING SYSTEM ARCHITECTURE 23

Single-User CAE System ... 23

User I n t e r f a c e .. 23
Program L ib ra ry : 23
Procedure L ib rary ’ 24
Configuration Database Library 26
Data D i c t i o n a r y ..27
Template Library 27
Activity Log ; 28

Multi-User CAE System ... 28
Architecture Discussion 31

PRESENT CAE SYSTEM DATA MANAGEMENT .. 33

Data E n t i t i e s .. 33
D istributive Databases ; 35
Data Communication : 37
Data Communication U t i l i t i e s " 39

Tem plate .. 39
Data Dictionary 42
Reviewer ; ; ; ; ; ; ; . . ; i . ; . 44

Parameter Reviewer ... 44
Record Reviewer 46
Reviewer Uses ; : 46

F o r m a t t e r .. 47

IMPLEMENTATION ... 50

SAMPLE PROBLEM 53

www.manaraa.com

V

TABLE OF CONTENTS (con 't)

Page

DATA INTERDEPENDENCE..58

STATUS.. 61

CONCLUSIONS... 63

REFERENCES..6U

FIGURES... 68

APPENDIX... 98

www.manaraa.com

INTRODUCTION

In the 1960 's , the Space Systems D ivision was c rea ted a t NASA

Langley Research Center to develop advanced technologies for spacecraft,

space s ta t io n s , and espec ia lly space t r a n s p o r ta t io n , i . e . , the Space

S h u t t l e . In the l a t e 1960 's groups were formed to evaluate a irc ra f t

company proposals for the Space Shuttle in the a reas of aerodynamics,

heating, weights, f l ig h t control, and f l ig h t performance.

The re su l ts of these groups were invaluable to the Shuttle program,

but i t was very expensive and time consuming to conduct these studies.

For a complete design a n a ly s i s , each group had to work on the same

c o n f ig u ra t io n simultaneously. In general, each group depended on data

generated by the other groups. S ta rting with i n i t i a l assumptions and

e n g in e e r in g ap p rox im ations , the d i s c ip l in e data would change as

deta iled analyses were completed and experimental data became available.

Many i te r a t io n s through the d isc ip lines were needed before a configura

tion analysis could be completed. Complete system op tim iza tion was

nearly impossible because a single i te ra t io n could take days.

In order to reduce the design cycle time, s e v e ra l a i r c r a f t com

panies developed large synthesis programs for the design and analysis of

1 2Space Shuttle c o n f ig u ra tio n s . . ' These programs c lo se ly coupled the

eng ineering d isc ip lines in order to conduct parametric and optimization

s tud ies . Although the design process was automated with these programs,

they had limited success. Each program was developed for a single Space

Shuttle configuration, which made them d i f f i c u l t to apply to the ever

ch an g in g d e s ig n r e q u i r e m e n ts (such as f i n a l o r b i t a l co n d it ions ,

s t a b i l i t y , and s t r u c tu r a l / m a t e r i a l s e le c t io n) and range of S h u tt le

www.manaraa.com

concepts (such as two-stage fu lly reuseable, stage and a ha lf p a r t i a l l y

reuseable, and the so lid /ex terna l cryogenic tank /orb iter hybrid that was

chosen). The programs lacked f l e x ib i l i ty because of fixed design logic,

r e s t r i c t i v e d a ta communications between su b ro u tin es , and lack of

generality in the a n a ly s is r o u t in e s . Changing one a n a ly s is ro u tin e

u su a l ly meant th a t more detailed data requirements from the other d is

c ip lines were needed. Because of the c o n s tan tly changing requirem ents

and the data dependency between the analysis routines, the design syn

thes is programs were in a cons tan t s t a t e of r e v i s io n . I n te r a c t iv e

o p e ra tin g systems were not availab le a t th is time, thus programs were

executed by cards in a batch mode. The designers and analysts could not

in te rac t with the design process u n ti l a f in a l design was established by

the computer. This f in a l problem re s tr ic te d one of the most important

engineering design contributions—cre a t iv i ty .

In the e a r ly 1970 's , the O ptim al Design I N t e g r a t io n (ODIN)

•3 h
system ’ was developed to in te g ra te in to one system the independent

programs of each sp e c ia l is t . The ODIN system was executed in a batch

mode. I t included a data management system to communicate information

between the various engineering programs and an executive control system

fo r c re a t in g a design cycle which consisted of sequencing through the

individual analysis programs, looping through a sequence of programs

based on design constra in ts , jumping from one sequence to another a f te r

a design c o n s t r a in t was s a t i s f i e d , and op tim izing s e le c te d d e s ig n

param eters . Conceptually, th is system provided a sound foundation for

computer-aided design because the sp e c ia l is ts could use th e i r programs

in which they had confidence, and the design system could adapt to any

www.manaraa.com

configuration or design problem. In p ra c t ic e the ODIN system had two

major f law s. F i r s t , the development of a design was very d i f f ic u l t

because the design cycle could r a r e ly be defined u n t i l a f t e r sev e ra l

design i te r a t io n s were completed. In a batch (non-interactive) system,

determining the execution sequence of analysis to solve a design problem

sometimes took weeks. Again, in a batch process, a deck of geometry

cards would be submitted and several hours l a te r a hardcopy of the p lo t

of the geometry would be returned, often with mistakes. These geometry

i te ra t io n s alone could take days.

With the advent of minicomputers and low-cost graphics equipment,

the Aerospace Vehicle In teractive Design (AVID) system was developed in

c g
1976. This system was very sim ilar to the ODIN system in concept.

The data management system was sim ilar but was extended to be used in an

in te r a c t iv e computing environment for rea l time data viewing and e d it

ing, and a l ib ra ry was created so th a t d a ta could be en te red in to or

e x tra c te d d i r e c t ly from the database by the a n a ly s is programs. An

in terac tive geometry system was developed that reduced geometry gener

a t io n time from days to hours. F in a l ly , a new executive program was

developed to allow the in te rac tive execution of analysis programs. The

design cycle i s guided by rea l- tim e re su l ts of the analysis programs.

Once a design cycle becomes rep e t i t iv e , sequences can be developed fo r

batch processing.

Based on the success of the AVID system, a ded icated computer was

purchased, and a number of general analysis programs have been developed

or acquired for geometry, aerodynamics, heating, f l ig h t co n tro l , opera

t io n s , and c o s ts . Major problems s t i l l e x i s t , however, because the

www.manaraa.com

number of data elements to be transferred between the analysis programs

has increased from several thousand to several m illion. The number of

in te rac tive terminals and d is tr ibu ted computers has a lso increased (a

te rm ina l and/or computer on every desk is now typ ica l) , allowing each

i n d i v i d u a l s p e c i a l i s t to p a r t i c i p a t e in t h e d e s i g n p r o c e s s

simultaneously.

The purpose of thi3 d i s s e r t a t io n is to develop a methodology to

In te g ra te d a ta , programs, and engineering sp ec ia lis ts together in the

present computer environment. F i r s t , engineering design i s d iscussed .

An h i s t o r i c a l p e rsp ec t iv e of past and current design in tegration ap

proaches and data management systems i s p resen ted . Then a system

a r c h i te c tu r e fo r program/program user in tegration is developed along

with a data management system to support th i s a r c h i te c tu r e . The ap

proach i s given in d e ta i l and lessons learned from the d iffe ren t phases

of implementation w ill be summarized.

www.manaraa.com

ENGINEERING DESIGN AND COMPUTER AUTOMATION

The engineering design process is i l lu s t ra te d in Figure 1. Working

w ith a s e t of predefined requirements, an experienced designer develops

a configuration that may meet these requirements. This t r i a l configura

t i o n i s then analyzed by the a p p ro p r ia te engineering d i s c ip l i n e s .

Performance re su l ts (size , weight, co st, e t c .) su b je c t to c o n s t r a in t s

a r i s in g from the analysis procedure (maximum loads, material se lec tion ,

s tru c tu ra l arrangement, propulsion selection , e tc .) are compared to the

i n i t i a l requ irem ents . I f the configuration does not meet the require

ments, the c h a r a c t e r i s t i c s of the c o n fig u ra tio n are modified in a

heu ris tic way in the early design stages because the consequences of the

7
changes are not known. As the configuration i s i t e r a t e d through the

a n a ly s i s , comparison, and re c o n f ig u ra t io n cycle, a general knowledge

about the trades of performance and constraints is gained. Through th is

knowledge, the fina l configuration can be defined and may be optimized.

For p rac tica l design, where only small changes to a c o n f ig u ra tio n a re

re q u ire d , the design process i s well defined and a specific handbook

method may be applied; but for revolutionary design (space programs and

new p r o j e c t s) , the design p rocess , ana ly s is too ls , and configuration

must evolve together because the i n i t i a l co n figu ra tion may be d r a s t i -
Q

cally d iffe ren t from the f ina l configuration.

In addition to the i te ra t io n cycle for the co n fig u ra tio n , r e s u l t s

must be i te ra ted by the engineering sp ec ia lis ts to complete the analysis

of one c o n f ig u ra t io n . As shown in Figure 2, a s im p li f ie d a i rp la n e

d e s ig n o y c le , the aerodynamics engineer needs geometry, which is

predefined, and the center-of-gravity location, which i s not i n i t i a l l y

www.manaraa.com

known. A guess of the eg loca tion is used u n t i l the weights engineer

computes the eg l o c a t i o n . The p erfo rm ance e n g in e e r needs the

aerodynamic r e s u l t s , p ropulsion specifica tions , and the weight of the

vehicle. The weights engineer needs the performance re su l ts and propul

s ion s p e c i f i c a t io n s for loads analysis. I t is obvious that the design

data must be i te ra ted and passed from one engineer to another before

analysis resu lts are completed for ju s t one configuration.

There arebasically three levels of design; conceptual, preliminary,

9-11and detailed . .. At the detailed design leve l, each subsystem and part

of the configuration must be thoroughly analyzed and t e s te d . R esu lts

from th i s phase of the design are part drawings used in the raanufactur-

g
ing process. This level of design re q u ire s more resou rces than the

o ther two because p a rt design and d e f in i t io n are labor Intensive and

analysis resu lts are verif ied with te s ts of prototype models.

Because of the investment required at the deta iled level of design,

the majority of research and development in design automation has been

d ire c te d towards t h i s l e v e l . The term computer-aided design (CAD) in

the current l i t e ra tu re does not address engineering d isc ip line in te g ra

t io n and co n fig u ra tion i te ra t io n automation. Computer-aided design is

associated with e le c t ro n ic d ra f t in g systems fo r the development of

2-dimensional and 3-diraensional drawings for mechanical, a rch itec tu ra l,

12s tru c tu ra l , and electronic applications.. These system are t ied to the

m anufac tu ring process through the g enera tion of tapes (f i l e s) fo r

numerically con tro lled machines th a t au to m atica lly m il l the defined

p a r t s . T h is p ro c e s s o f com bining c o m p u te r -a id e d d e s ig n w ith

computer-aided manufacturing is called CAD/CAM.

www.manaraa.com

The f i r s t two levels of design are used to define and evaluate the

configuration for the f in a l design leve l. In the f i r s t level of design,

the conceptual l e v e l , the c o n fig u ra tio n needs and requirem ents are

evaluated, a market analysis is conducted, and a potential 3et of so lu

t io n s are d e fined . Rough order of magnitude engineering analyses are

used to determine i f the solutions can be p h y s ic a l ly o b ta in ed . In the

second le v e l of design , preliminary design, sophisticated engineering

techniques are used to reduce inaccuracies to determine the best con

figuration for the f ina l design cyc le .]0

C urren tly automating the conceptual and p re lim inary l e v e ls of

design with computerized systems does not appear to be very a t t rac t iv e

as compared to the resource in te n s iv e d e ta i le d design le v e l th a t u l

t im a te ly in te r f a c e s with the m anufacturing p ro c e s s .! ! Engineering

companies do not s e l l co n fig u ra tio n designs but s e l l the p ro d u c ts

resu lting from the detailed design process. On the other hand, i t is a t

the lower levels of design where the products are f i r s t developed. At

these lower l e v e l s , the products can be easily enhanced and optimized

while the cost of change is re la tiv e ly low. These optimized designs may

r e s u l t in reducing re -e n g in ee r in g ta sk s a t the deta iled level and in

development of a more competitive product. I f the a n a ly s is to o ls are

not r e a d i ly a v a i la b le through autom ation, th e re i s l i t t l e chance of

making radical changes to an e x is t in g design or rep la c in g the design

with a unique idea because subs tan tia l time and cost has already been

invested. On the other hand, i f the analysis tools are r e a d i ly acces

s ib le th a t can reduce the time and cost involved in verifying a new

concept, innovation can be encouraged at these lower l e v e ls . Because

of these p o te n t ia l b e n e f i t s , techniques a re now being developed for

www.manaraa.com

combining Mapplication3 software, graphics hardware, and data management

c a p a b i l i t i e s " i n to i n t e g r a t e d co m pu ter-a ided engineering (CAE)

12systems..

www.manaraa.com

PAST APPROACHES TO COMPUTER-AIDED ENGINEERING

9

Many previous approaches for engineering d isc ip line in tegration for

a n a ly s is and design have had th ree d i s t i n c t components. The f i r s t

component is that of geometry defin ition and presentation since geometry

permeates almost every engineering model. Data management, the second

component, communicates data between the eng ineers and th e i r a n a ly s is

programs. The f i n a l component is executive management which controls

and d irec ts the design process and a llocates system resources.

Geometry

Because there are a number of companies involved in the development

and marketing of geometry (CAD/CAM) systems for a l l the various levels

of design and applications, i t will be assumed that geometry i s commer

c i a l l y a v a i la b le to perform any required task. For example, there is

ANVIL HOOO mechanical drafting and manufacture in te r f a c e , PATRAN-G for

f in i t e element modelling for the large s truc tu ra l analysis programs, and

the Configuration Development System (CDS) fo r conceptual s tu d ie s of

a i r c r a f t , to name ju s t a few used at Langley Research Center.

Data Communication and Program Coupling

The da ta communication and analysis program coupling in past and

current computer-aided m u l t id is c ip l in a ry systems can be g en era lized

as: closed-coupled in tegration , close-coupled in terfacing, loose-coupled

in tegration , and loose-coupled in terfacing.

www.manaraa.com

1 2 13* " 15Sing le programs th a t perform design sy n th e s is .’ . are c las

s i f ie d as being close-coupled in te g ra t io n systems (F ig . 3a). Close-

c o u p l in g means t h a t th e p a th through the d i s c ip l in e s to reso lve

parameter i te ra t io n , design constra in ts , and/or optimization i s u su a lly

fixed. In these single programs, the executive consists of the in ternal

program logic that c a l ls the various subroutine modules for eng ineering

a n a ly s i s . The data t r a n s f e r i s usually t igh tly integrated through the

use of common global blocks and da ta f i l e s . The main advantages of

th ese systems a re : a very f a s t execution speed that allows parametric

studies and optimization, t ig h t ly controlled data management so no data

i n t e r p r e t a t i o n e r ro r s occur between the various modules, and small

enough size for a small group of engineers (1 to 5) to use. The d isad

vantages of c lose-coup led in teg ra tio n derive from the d i f f ic u l t i e s of

in tegrating a l l the analysis pieces into one computer program and a lso

from the d i f f i c u l t i e s in adapting to evolving requirements because the

analysis techniques are deeply embedded in the program and data changes

o f ten a f f e c t much of the program. Many of the systems are developed to

perform complete system sy n th es is ; thus i t i s d i f f i c u l t to analyze a

veh ic le fo r a s in g le d i s c ip l in e , or conduct ju s t a p a r t ia l study. The

SIZe ! 6 system t r i e d to e lim in a te these problems by working w ith a

l ib r a r y of a n a ly s is modules th a t can be precompiled and managed by a

customized executive system. Each engineering group develops i t s own

analysis modules to support th is system. A special purpose data manage

ment system was developed to ooramunicate data between the a n a ly s is

modules. The SIZE system had a good a rc h i te c tu r e for developing an

automated design system for conceptual studies but only a limited number

of design parameters could be used.

www.manaraa.com

Close-coupled in te r f a c in g leads to the coupling of independent

a n a ly s is programs th a t were used by the individual sp e c ia l is ts (Fig.

3b). With in terfac ing , the data coupling i s e x te rn a l to the a n a ly s is

programs. The in terfacing of two programs is accomplished by having the

f i r s t program w rite the inpu t f i l e fo r the second program. I f th i s

in p u t f i l e meets a l l requirem ents of the program, then the second

program does not have to be a ltered except to c rea te an inpu t f i l e for

th e n e x t program . By re p e a t in g t h i s process between the various

programs, a f ix ed path through the programs can be e s ta b l is h e d for

a n a ly s is and design . This in terfacing technique is re la tiv e ly easy to

17 18implement and has been successful in coupling programs.. ’

As programs are linked into these close-coupled systems, a network

of programs evolves with fixed execution p a th s . T here fo re , a d isa d

v a n ta g e to c lo s e -c o u p le d in te r f a c in g i s th a t the design cycle i s

re s t r ic te d to the fixed path of the linked programs. The path may be

a p p ro p r ia te for the f i r s t intended application (e .g . , an a irp lane) , but

may be wrong for another application (e .g . , a space sh u t t le) . Also, as

the network of a n a ly s is programs grows, i t becomes more and more d if

f i c u l t to couple new programs in to the system. A new program may

re q u ire inpu t from several programs tha t are not d irec tly "linked” . A

separate program (called an in te rm ediary program) must be w r i t te n to

read the output from several programs and create an input f i l e for th is

new analysis program.

Because of the problem of coupling new programs with de-centralized

information and because the design cycle i s p redefined by the program

network, many of the c u rre n t systems have centralized the data, which

leads to loosely coupled programs. Loose-coupled systems allow programs

www.manaraa.com

12

to be individually executed and execution path3 through the programs to

be defined externally.

Loose-coupled in te g ra t io n is the technique employed by most busi

ness applications today (Fig. 3c). A central database management system

i s used fo r da ta communication to a l l the separa te programs. The

programs are developed from the ir inception to communicate d irec tly with

the database management system for both input and output. This approach

is the one being developed by the Independent Programs fo r Aerospace

i q
v e h ic le Design (IPAD) s tu d y . . The main advantage of loose-coupled

in tegration is that the programs (analysis techniques) can be developed

independently and can la te r be coupled together to form a complete CAD

system. Each program is Independent of the o th e rs as long as the r e

q u i r e d in p u t d a ta i s r e s id e n t in the c e n t ra l da tabase . The main

disadvantage is the complexity of integrating existing programs with the

database management system. For a program th a t has been developed

without any considerations fo r fu tu re database in te g ra t io n and has a

la rg e data input with many a n a ly s is options, the integration task is

d i f f ic u l t for anyone but the program developer. The d i f f i c u l t y a r i s e s

because the in ternal program variables that must be integrated with the

database are almost never documented and must be deduced by comparing

the input procedure with the computer code. For programs that have been

poorly struc tured , t h i s v a r ia b le i d e n t i f i c a t i o n can be a formidable

ta s k . For a oompany-wide CAD system where data standards can be en

forced and program development is dedicated to th is CAD system, i t can

be advantageous to in te g ra te the programs. However, because of the

small budgets usually associated with conceptual and p re lim inary CAD

systems, the software overhead of integration could be prohibitive.

www.manaraa.com

To eliminate the integration software overhead, a n a ly s is programs

can be i n t e r f a c e d to a c e n t r a l d a ta b a s e fo r data communication

(loose-coupled in te rfac ing). Instead of communicating d irec tly with the

database fo r in p u t, a pre-processor program is used to re tr ieve data,

transform the d a ta , and format the da ta in to an input f i l e fo r the

a n a ly s is program (F ig . 3d). The advantage of in terfacing with a pre

processor program is th a t i t re q u ire s no knowledge of the in te r n a l

coding of the analysis program. Only the program input requirements are

needed, and these are usually well documented. Because no modifications

are made to the input and analysis sections of the program, there is no

r isk of developing "bugs" in a production program. Finally , i f problems

with the coupled program do occur, the input and analyses program can be

examined and executed independently by the s p e c i a l i s t re sp o n s ib le fo r

the program. The disadvantages of interfacing are that a pre-processor

program must be written for each analysis program and a d d i t io n a l com

pu ter overhead (tim e) i s required for writing an input f i l e . Program

output data to be communicated to other programs can be handled in two

ways. F i r s t , an output subroutine can be added to the analysis program

to generate a f i l e o f d a ta . This f i l e i s read by a p o s t-p ro cesso r

program which s to re s the data in the c e n t r a l da tabase . The second

method involves integrating the desired output re su l ts d irec tly with the

c e n t r a l database in the analysis program. The second approach involves

ju s t as much work as the f i r s t , but the post-processor program develop

ment i s eliminated. Loose-coupled interfacing has been used by several

 ̂ t 5,20-24design systems.

www.manaraa.com

14

Exeoutlve Management/User Interface

The th ird major component of past engineering synthesis systems is

the to o l to manage program execution and incorporate the engineering

sp e c ia l is t d irec tly into the computer-aided environment.

With s in g le program sy n th e s is systems, execu tive management is

accomplished mostly through the main ro u t in e in a program th a t loops

through the a n a ly s is during i t e r a t i v e design cy c les , Jumps from one

i te ra t io n to another as design constrain ts are sa t is f ie d , and continues

th e d e s ig n p ro c e s s based on d i r e c t i o n s g iven by o p t im iz a t i o n

1 —O 1 1C
algorithm s... . . In most of these sy n th e s is systems, the only

control the user has over the design cycle consists of options to se lec t

various design cycles that have been preprogramed in to the system. A

ty p ic a l example in these systems is vehicle sizing in which the vehicle

can be s ized to ca rry a sp e c i f ie d payload on a given m iss ion , the

payload weight can be c a lc u la te d fo r a f ixed vehic le size to meet a

specified mission, or the mission can be calculated for a fixed veh ic le

and payload s i z e . I t i s obvious th a t the synthesis programs are not

very general from the number of d i f f e r e n t design systems fo r various

classes of vehicles which can be found in the l i t e ra tu re .

In se v e ra l design systems th a t u t i l i z e d independent computer

programs for eng ineering a n a ly s is , the executive consists of a design

control language th a t i s used to couple the programs in a sp e c i f ie d

o 16
sequence. V Looping, jumping, and optimization are available in many

of these systems, and are sim ilar to the preprogramed design lo g ic in

the s in g le program sy n th e s is programs. This trend of specifying the

complete design process with optimization in which the computer so lves

the design problem was p rec ipated by the batch operating systems that

www.manaraa.com

15

were available a t th is time. User in te rac tion was very time consuming

because re s u l ts were available in printed form only (graphical form was

available in the next day delivery serv ice), and input had to be punched

on cards.

With the advent of minicomputers, i n t e r a c t iv e o p e ra tin g systems,

and low-cost graphics equipment, the trend has sh if ted from monolithic

and highly automated executive systems to the e n g in e e r - in - th e -d e s ig n -

5 10-23 25loop user in te r f a c e systems. V The main objective of the user

in terface is to provide an environment in which the engineer can execute

program s in response to the a s s im i la t io n o f r e a l - t im e eng ineering

analysis re s u l ts . I f the design problem has to be solved by many i te ra

t iv e cyc les , the user in terface provides an environment sim ilar to that

of the batch synthesis systems. With the user in t e r f a c e , the design

cycle can be i n t e r a c t iv e ly e s ta b l is h e d and then programmed. This ap

proach saves time and reduces boredom by elim inating r e p e t i t i v e ta s k s .

The second objective of the user in terface is to provided a d irec t path

into the design data for review and manipulation. Thus the user i n t e r

face should provide t o t a l c o n tro l o f a l l the resources of the design

system - analysis programs and data.

www.manaraa.com

♦

16

PERSPECTIVE OF CURRENT DATABASE MANAGEMENT SYSTEMS

A database management system controls the s tructure of and access

to a central repository of data. With a c e n t r a l da tabase , redundancy

(d u p lic a te data copies) can be reduced, standards in the representation

of data can be enforced, security re s t r ic t io n s can be applied, and da ta

26can be shared. One of the major objectives of any database management

system i s to provide independence between data and the a p p l ic a t io n

programs. Data independence can be defined as the iso la tion of data

from the programs so that changes in one do not a ffec t the other. Thus,

softw are maintenance of application programs is minimized when changes

or additions are made to the system.

To o b ta in t h i s da ta independence, the national standard for the

development of database management systems recommends a th ree laye r

2 7(schema) approach (F ig . 4). The in ternal schema defines the access

struc tures for the data. Various s t ru c tu re s a re provided so th a t the

da ta can be s to re d or accessed e a s i ly through so r t in g , stacking, or

queueing or accessed quickly by inversion or hashing . The conceptual

schema defines the overall s tructure (defined la te r) of the data in the

central database. F inally , the external schema is a subse t (and pos

s ib le re o rg a n iz a t io n) of the conceptual schema and defines the data to

be accessed by each application program.

The s t r u c tu r e of the da ta in the database is the main difference

between current database systems. The three data s t r u c tu r e s a re r e l a

tiona l, network, and h ierarch ica l.

The re la tio n a l model is i l l u s t r a t e d in Figure 5. This model is

defined by ta b le s ca lled re la tio n s . In the figure, the re la tions are;

www.manaraa.com

17

VEHICLE, which l i s t s current concepts, SUBSYSTEMS th a t a re ty p ic a l fo r

any veh ic le development, and PACKAGING, which positions the parts in

each vehicle. The columns of data are called a t t r i b u t e s , and each row

of data i s called a tuple. The advantages of a re la tio n a l database are

that the structure is very simple to define (tables) and that a n a tu ra l

28query language ex is ts based on se t theory. For example, to re tr ieve

a l l parts for the SHUTTLE, the following commands are used.*

JOIN VEHICLE AND PACKAGING OVER V# GIVING V_AND_P

SELECT S# FROM V_AND_P WHERE VNAME EQ SHUTTLE

GIVING SH_V_AND_P

JOIN SH_V_AND_P AND PARTS OVER S# GIVING SH_PARTS

where V_AND_P, SH_V_AND_P, and SH_PARTS are temporary re la tio n s . The

JOIN command combines the r e l a t i o n s VEHICLE and PACKAGING in to one

r e l a t i o n , V_AND_P, where the veh ic le numbers, V#, match. The SELECT

command builds another re la tio n that contains only the SHUTTLE v e h ic le .

The f i n a l JOIN command s a t i s f ie s the query. The disadvantages of using

the re la tiona l data s tructure are that some natural data s t ru c tu re s are

not e a s i ly defined in re la tio n a l form and the systems are t rad i t io n a lly

slow because the system, not the user, structures the data in te rna lly .

The second data s truc tu re , network s truc tu re , must be defined both

logically and in te rnally . The network s t r u c tu r e can model r e l a t i o n s

(t r e e s) and of course networks as shown in Figure 6. The tables are

called records, the columns are called f ie ld s , and the physical connec

t i o n s between the reco rds are c a l le d s e t s . The advantages to the

network structure are the f l e x ib i l i ty in data structure and the a b i l i t y

to customize the in ternal s truc tu re . The disadvantages are the complex

language for constructing the structure and the procedural data language

www.manaraa.com

18

which i s used to "walk” through the database record by record using the

access paths shown in Figure 6. Most network systems do not support an

in teractive query language.

The f in a l s tructure is the h ierarchical s t ru c tu re (F ig . 7) . This

s t r u c tu r e was one of the f i r s t s t r u c tu r e s to be used by a database

management system. The ta b le s a re c a l le d rec o rd s , the columns are

c a l l e d f i e l d s , and l inkag es between reco rds a re c a l le d segments.

Because the structure is simple, both in te rac tive and program interfaces

a re supported . The problems with the h iera rch ica l s truc ture is that

only tree s tru c tu res can be modelled and da ta redundancy (d u p lic a te

r e c o rd occurrences) can be a problem. (E .g . , SEAT in Figure 7 is

duplicated.)

The " r igh t” type of data structure was a major topic of controversy

between the developers of these systems in the la te 1970*s. Today, most

systems claim to support some or a l l the cap ab il i t ie s of a l l the data

s truc tu res . Research is being conducted that combines the best features

of the th ree models into a unified data s truc tu re and data manipulation

26(query) language.

There are a number of other q ua lit ie s about data management systems

other than data s t ruc tu res . There are data s e c u r i ty techniques th a t

p ro te c t the data a g a in s t both in t ru s io n by non-authorized users and

in tentional destruction. Security mechanisms range from passwords to

physica l devices such as voice or f in g e rp r in t va lidators. There are

in teg r ity mechanisms to ensure th a t the database is accu ra te a t a l l

t im e s . I t i s im possible to ensure th a t a l l da ta en tered in to the

database is completely c o r r e c t , but i t i s p o s s ib l e to check th e

p l a u s i b i l i t y of the d a ta . I n t e g r i t y mechanisms include checking the

www.manaraa.com

data between upper and lower bounds or comparing with a se t of p o ss ib le

v a lu e s . A nother f e a tu re i s a backup and recovery system fo r r e

establishing the database a f te r a hardware or softw are f a i l u r e . This

system is very im portant fo r banking, a i r l in e reservations, or other

business applications where each transaction is c r i t i c a l . A da ta d ic

t io n a ry i s sometimes supported that provides the system administrator

with a description of each en ti ty in the database and a c ro ss -re fe ren ce

guide between the data and application programs, which aids in review

ing , modifying, or adding data or p rogram s. F i n a l l y , t h e r e a re

mechanisms to share the database simultaneously among a l l users (called

concurrency) beoause th is is the main purpose of most c e n t r a l database

systems.

I f the main purpose for database management systems is to integrate

independent computer programs through a central database and provide

data independence and an array of data struc tures and u t i l i t i e s , why i s

th e re l i t t l e a p p lica t io n of these commercial systems to an engineering

environment? The main reason that database management systems have not

been used in engineering environments is because these systems have been

developed exclusively for business applications. Severa l s tu d ie s have

ca tego rized the d if fe re n c e s between engineering and business database

applica tions .2 ̂ ^

The f i r s t d i f f e re n c e i s the programming language. Engineering

applications are written in FORTRAN which has very l im i te d support for

data s t ru c tu re s . Business applications are written mostly in COBOL and

PL/1. The network s t r u c tu r e d iscussed p rev ious ly i s based on th e
p g

CODASYL DBTG standard which is an extension to the COBOL language.

Interfacing these systems to FORTRAN programs is e ither very awkward or

www.manaraa.com

20

not supported. Also, because business programmers use mostly character

or decimal d a ta , eng ineering data types such as in te g e r , r e a l , and

complex are usually not supported.

The typical application for engineering i s fo r in te g ra t in g la rge

programs fo r a n a ly s is and design. Large groups of localized data are

accessed , m odified, and th en r e p la c e d w ith m odera te f r e q u e n c y .

Geometric data is an example of data that is retrieved, manipulated, and

then replaced. A typical business application (banking, a i r l in e r e s e r

v a tio n , inven to ry , e t c .) involves in te g ra t in g small programs where

extremely small groups of data are consistently being updated, but the

database remains constant in s ize . For example, in a banking applica

tion many updates to accounts w ill be made daily , but only a r e l a t i v e ly

small number of accounts w ill be added or deleted.

Database management systems were developed fo r b u s in e s s d a ta

m anipu lation . When da ta i s being updated, the database system locks

out other users to the data u n t i l the in teg r ity of the da ta i s checked

and da ta rep la ce d . For business applications, there is no problem with

these quick transactions. For engineering a p p l ic a t io n s , the t r a n s a c

t io n s of la rg e data groups can severely degrade multi-user performance

because of the long lockout times. I f a da ta i n t e g r i t y e r ro r occurs ,

the system r e s to re s the database to i t s orig ina l form and cancels the

transaction request. To perform th is rollback, the system reco rd s the

o p e ra tio n s of every transaction . When an in teg rity check is positive,

the system simply applies the operations in rev e rse o rd e r . For small

t r a n s a c t io n s , th e re is usually no problem, but for large transactions,

the overhead can be quite s ign if ican t .

www.manaraa.com

21

In an engineering environment, localized areas of the database are

used by the various s p e c ia l i s t s . These a reas are r e t r i e v e d as "work

c o p ie s " . These copies are modified a f t e r much a n a ly s is and then

released back into the database. Thus, only the l a s t saved copy needs

to be re s to re d i f an i n t e g r i t y e r ro r occurs. These work copies have

several purposes: 1) to modify an existing data se t for revisions, 2) to

serve as a guide in c re a t in g a new data area, and 3) to move data be

tween public and private areas. Because the engineering update ac t iv i ty

i s c h a ra c te r iz e d by o p e ra t io n s on a lo c a l iz e d data se t , many of the

u t i l i t i e s used for concurrency are not needed un til a data s e t i s to be

placed back into the central database.

There are two approaches on how to support the eng ineering data

a c t i v i t y . The f i r s t i s to provide a l l the fe a tu re s of a database

management system plus the fe a tu re s ap p licab le to the e n g in e e r in g

19environm ent.. The second is to support local databases for the en

gineers and provide a database merging u t i l i t y to c o n s tru c t a c e n t r a l

database from local databases of completed analyses.

The f i r s t approach has been s tud ied for more than 10 years a t a

c o s t of more than 15 million do lla rs . To provide data security , multi

user concurren t access , da ta i n t e g r i t y , backup and r e c o v e r y , th e

da tabase management system became very large and computational overhead

precluded an i n te r a c t iv e design environment. The a r c h i te c tu r e was

redesigned around two se p a ra te data management systems. The large

m ulti-featured system was used to handle company wide tran sac tio n s , and

a r e l a t i v e l y small system was used for the actual engineering design

process.

www.manaraa.com

In th i s paper, the approach of u t i l iz in g a single high performance

data management system to couple analysis programs into a design system

to support m u lt i -u se r projects is explored. An overall computer-aided

engineering system architecture is designed, to o ls to support program

coupling and U3er in terface are defined, and a data management system to

manage the complete system of programs, data, and users is developed.

www.manaraa.com

23

PRESENT COMPUTER-AIDED ENGINEERING SYSTEM ARCHITECTURE

The present system architecture was developed from experience in

developing a conceptual design system, experience in using other sys

tems, and past experiences of previous computer-aided engineering (CAE)

systems th a t have been rep o r te d in the open l i t e ra tu re . Figure 8 i l

l u s t r a t e s the a r c h i te c tu r e of a s i n g l e - u s e r CAE (c o m p u te r -a id e d

e n g in e e r in g) system. This s in g le -u s e r system i s provided for ex

p lana to ry purposes and w i l l be expanded to s u p p o r t a m u l t i - u s e r

environment.

Single-User System

User Interface

The user in terface is used to provide an in te r a c t iv e environment

between the user and the CAE system. The user in terface consists of a

communication language that allows a l l the cap ab il i t ie s of the system to

be accessed by the u se r . The command language, i n te r a c t iv e system

presentation to the user, execution error checking and system recovery

and multi-user cap ab il i t ie s for the present CAE system have been defined

and developed by Dr. James Schwing of Old Dominion University and Donald

25McMillan, his research a s s is ta n t .

Program Library

The program l ib r a r y c o n s is t s of a l l the programs that have been

coupled to the system. For each program, th e re e x i s t s the FORTRAN

www.manaraa.com

2H

source f i l e , the executab le run f i l e , a p p ro p r ia te graphics and math

l ib r a r ie s , and the procedure for creating the executable run f i l e .

The purpose of the program catalog is similar to that of the card

catalog in a ty p ic a l l i b r a r y - to thoroughly document a l l a v a i la b le

resources. The program catalog consists of the followings

1) program name

2) version number

3) date la s t modified

4) description

5) keywords

6) source f i l e name

7) executable run f i l e name

8) l ib ra ry names

9) procedure name for building the run f i le

10) description

11) custodian's name

An example of the program catalog is given in Figure 9.

Procedure Library

The technique used fo r program execution is with procedure (or

command) f i l e s that are available on most modern in te r a c t iv e ope ra ting

system s. These f i l e s c o n s is t of a l i s t of operating system commands

that are executed in sequence. The system commands can c o n s is t of any

ope ra ting system command such as f i l e handling and program compilation,

loading, and execution. These procedure f i le s can usually be processed

e i th e r i n t e r a c t iv e ly or in a batch mode. The user in terface uses th is

f a c i l i t y extensively for in terfacing with the operating system.

www.manaraa.com

25

Examples of the procedure f i l e s in the l ib ra ry are presented in

Figure 10. An entry ex is ts for each system command and consis ts of the

following:

1) procedure name

2) system command number

3) system command

4) system command description

In the command l i n e , the command to execute a program on the PRIME

computer i s SEG followed by the program name and the input f i l e name i f

needed. The input f i l e in the procedure f i le s is the tem plate name as

described in the data communications section.

A ssociated with the procedure f i l e s i s a procedure ca ta lo g to

i d e n t i f y each p rocedu re . An example of the procedure ca ta lo g is

presented in Figure 11. The procedure lib ra ry consists of the following:

1) procedure name

2) description

3) date created

4) custodian 's name

For each program, there may be more than one procedure for execu

tion since a program can take on various charac te r is t ic s based upon the

inpu t p rovided. For example, a generalized tra jec to ry program can be

used to s im ula te v eh ic le ta k e o f f , veh ic le m ission m aneuvers , and

land ing . Thus a d i f f e r e n t procedure could be used for each of these

cases that specifies a d if fe ren t input data stream.

www.manaraa.com

26

Configuration Database Library

A configuration database is the repository for a l l the data that is

used or c rea ted by the eng ineering a n a ly s is programs that have been

coupled to the system. The database can consist of mission requirements

d a ta , geometry d e f in i t io n data, input options and default input values

for analysis programs, re su l ts generated by the analysis programs, and a

wide v a r ie ty of m iscellaneous d a ta . This data can take the form of

sca la rs , arrays, tab les , and se q u e n t ia l f i l e s in various da ta types ,

e .g . , in teger, rea l , and character.

The i n i t i a l configuration database is called the golden config u ra

t io n d a tabase . I t consists of an example of input and output data for

each of the analysis programs. To use the CAE system, a copy of t h i s

go lden d a ta b a s e i s f i r s t made and m od if ica tions a re made to t h i s

d a ta b a s e to a n a ly z e e x i s t i n g c o n f i g u r a t i o n s o r d e s i g n new

c o n f i g u r a t i o n s . With th e c o n ce p t o f new and old co n f ig u ra tio n

databases, checks can be made on the input and output da ta of a n a ly s is

programs by comparing the two databases.

Associated with the co n fig u ra tio n databases i s a c o n fig u ra tio n

da tabase ca ta lo g th a t i s used for id en tif ica tion and database re c a l l .

An example of the catalog is presented in Figure 12. The c a ta lo g con

s i s t s of the following:

1) configuration database name

2) o r ig in con figu ra tio n database name (SYSTEM is the golden
database)

3) date copied

4) date la s t modified

5) description

6) custodian's name

www.manaraa.com

27

Data Dictionary

Just as important as the configuration database is a description of

each of the da ta elements in the database. This information is stored

in the the data dictionary . The da ta d ic t io n a ry f a c i l i t y in c u rre n t

database management systems is used to store the schemas (data struc ture

de fin itions) and cross-reference information th a t shows the da ta flow

through the programs. The data d ic t io n a ry i s invaluab le for large

systems when changes are made to the a p p l ic a t io n programs or when new

26programs are added to the database system.

In th is CAE system, not only i s the da ta d ic t io n a ry i s not only

used to v i s u a l iz e the da ta flow through the system, i t a lso has an

expanded ro le in program and in te r a c t iv e data co m m un ica tions . A

detailed description of the data dictionary will be presented la te r .

Template Library

Templates a re windows into the configuration databases. They are

used to define the data in the database that is ex tra c ted for a n a ly s is

program input or replaced by re su l ts generated by an analysis program.

These same templates are used to define the da tabase input and output

da ta fo r review and manipulation. Templates can also be used to gener

ate data reports as the design cycle progresses. The template c o n s is ts

of a template catalog and the templates. Templates will be presented in

greater d e ta i l l a te r because, l ik e the data d ic t ion ary , they are used

in the database communications.

www.manaraa.com

28

Activity Log

When a design a c t i v i t y i s completed for the day, or temporarily

suspended, the a c t iv i ty log i s used to record comments about the ac

t i v i t y to serve as a reminder fo r the next design se ss io n (a must

feature for aging t e c h n o lo g is t s) . I t can a lso be used to r e s t a r t a

previous design a c t iv i ty . The a c t iv i ty log consists of the following:

1) u se r 's id

2) session comments

3) configuration database name

4) date and time

An example of a log is presented in Figure 13*

Multi-User CAE System

By comparing Figure 14 with Figure 8, i t can be seen th a t the

m u lt i -u se r CAE system i s very similar to the single-user system. The

main d if fe re n c e i s th a t in a m u lt i -u se r system, a work environment

co n ta in in g lo c a l copies o f co n fig u ra tio n databases, programs, proce

dures, and templates i s c re a te d for each u se r . The a c t i v i t y log i s

moved to the user work environment fo r personal use and a catalog is

added to the g lobal da tabase to id e n t i fy the various users o f the

system.

With local procedures and templates, the standard global procedures

and tem plates provided by the system administrator can be customized to

the u se r 's personal ta s te s . For example, procedures fo r the execution

of s in g le a n a ly s is program can be combined to form a personal design

sequence of program executions to solve a given i t e r a t i v e problem.

Also, a template that id en tif ie s many input parameters for a program can

www.manaraa.com

29

be culled to only a few pertinent parameters which reduces i n te r a c t iv e

d a ta p rocess ing time and e r r o r s . These personalized features can be

used to in c rease p ro d u c t iv i ty in an experienced u se r and g r e a t l y

simplify a system for the novice user.

To maintain s t r i c t standards and provide a f ix ed design environ

ment, only the system a d m in is t ra to r can modify the elements of the

global database. Because changes in the g lobal database may have an

impact on the user d a tab ases , the system a d m in is t ra to r may have to

modify local databases as well.

With th is a rch itec tu re , a l l the users are isolated from each other.

Each user can make changes to the configuration database without a ffe c t

ing the o ther u se rs . Once a sp e c ia l is t is s a t is f ie d with h is re su l ts ,

the configuration database can be released to the o ther s p e c i a l i s t s or

upon approval of the system administrator i t can be stored in the global

database.

This iso lated approach seems to be a be tter approach than providing

concurrent access to a single database. In the concurrent approach, a

s p e c i a l i s t can change a value to an input parameter. Before he has a

chance to run his analysis , a second sp e c ia l i s t could change the value

aga in . Thus, the r e s u l t s would not be dependent on his assumed input

parameter. In an even worse sc e n a r io , the inpu t parameter could be

changed by another sp e c ia l is t a f te r the re su l ts were computed. In th is

case the re su l ts would not even be dependent on the c u rre n t parameter

value. This problem of data dependency will be discussed la t e r .

For th is isolated approach to work, a database compare fe a tu re i s

needed to id e n t i fy d i f fe re n c e s between configuration databases. On a

www.manaraa.com

particu la r pro jec t, each sp e c ia l is t may begin with the same configu ra

t io n d a tab ase . I f two s p e c i a l i s t s need to communicate the ir re su l ts ,

the database compare f a c i l i t y would indicate a l l d i f fe re n c e s th a t must

be scrutin ized to determine i f there is any conflicting data between the

two configuration databases. A simple example i s th a t one s p e c i a l i s t

may have changed the geometry. For th is case, a decision on the correct

geometry would have to be made by e ither the sp e c ia lis ts or the p ro je c t

leader.

This database could also be used by the system a d m in is tra to r to

compare the databases of a l l the sp e c ia lis ts working on the same project

to determine p ro je c t p ro g re s s and i d e n t i f y any p o t e n t i a l major

co n fl ic ts .

In order to release a configuration database that is representative

o f a l l th e a n a ly s e s perfo rm ed by th e v a r io u s d i s c i p l i n e s , the

sp e c ia l is ts would have to d iscuss each of the database c o n f l i c t s and

agree on a compromise d a tab ase . In t h i s case , the da ta may not be

"correct" because the r e s u l t s of each s p e c i a l i s t may depend on the

r e s u l t s from the o ther sp e c ia l is t s , which may have been changed in the

compromise database c o n s t ru c t io n . In order to produce a "co rre c t"

da tabase , the database may have to be passed from one sp e c ia lis t to

another u n til a l l con fl ic ts are s a t is f ie d . The term "correct" may mean

a converged so lu t io n or simply a database acceptable to each of the

sp e c ia l i s ts . The problem of obtaining a converged so lu t io n i s a major

one in any m u l t id i s c ip l in a ry p ro je c t where data must be communicated

between the sp e c ia l i s t s . This a rch itec tu re was con struc ted to reduce

data communication time and errors in in terpreting the communicated data

www.manaraa.com

through the electronic configuration database and to warn about possible

data con flic ts . Solution convergence is an area of future research.

Architecture Discussion

The sys tem a r c h i t e c t u r e was designed to provide management,

v i s ib i l i ty , f l e x ib i l i ty , and performance. As discussed in the a rch itec

t u r e d e s c r ip t io n , th e re i s a ca ta lo g th a t l o c a te s , d e sc r ib e s , and

provides a point of contact for every active en ti ty in the system (data,

programs, and users) . There is as much meta data (data describing data)

as there is actual configuration data.

This meta data makes the system v i s ib le to the u se r . The work

ac t iv i ty log guides the design process by providing past procedures that

solved s im ila r problems. The program and procedure catalogs can aid in

the selection and use of programs to generate needed d a ta . The global

and lo c a l databases provide a l i s t of a l l data generated by the users

for that pro ject. F in a l ly , the data d ic t io n a ry reduces m istakes of

in te r p r e t in g and applying data because a detailed description including

the physical units is provided.

By using independent computer programs and a c e n t r a l database

system for data communications, th e re i s f l e x i b i l i t y in c re a t in g a

design environment to model engineering problems. The programs can be

executed in any order to s a t i s f y design requirem ents or design con

s t r a i n t s th a t a r i s e during the design cy c le . F l e x i b i l i t y i s a lso

provided by the addition of new programs or d a ta . Data can be added

w ith a b so lu te ly no e f f e c t on the system because the data management

system provides data independence.

www.manaraa.com

As demonstrated in se v e ra l attempts to use a commercial business

database system in an engineering environment, the system response was

slow, the d e f in i t i o n of the database was d i f f ic u l t , and trying to use

29 30unsupported data types wa3 im possib le . The p resen t system was

designed for maximum performance with multiple single-user systems with

an umbrella management system, s in g le purpose da tabases (a se p a ra te

database for each p ro je c t /a c t iv i ty combination), and a data management

system designed e s p e c ia l ly fo r t h i s system. The lo c a l iz e d database

system e lim in a te s concurrency checking; thus a small high speed data

management system can be used. A s in g le purpose da tabase minimizes

database s ize which re su l ts in reduced search times through the database

and less disk space because data in v ers io n s are not needed to reduce

search time of individual user data se ts .

The following section is a discussion of the development of a da ta

management system for th is CAE system.

www.manaraa.com

PRESENT CAE SYSTEM DATA MANAGEMENT

33

A re la t io n a l information system (ARIS) was developed s p e c i f i c a l ly

fo r the p resen t CAE system. As discussed e a r l ie r (3ee PERSPECTIVE OF

CURRENT DATABASE MANAGEMENT SYSTEMS), many of the c u rre n t database

management systems have adopted one of three data models - re la t io n a l ,

network, or h iera rch ica l. The re la t io n a l model was s e le c te d for t h i s

study because i t s data s t r u c tu r e i s easy to understand by engineers

(ta b u la r form), th e re i s a n a tu ra l query language for i n t e r a c t i v e

p rocess in g , the model could be enhanced to support any FORTRAN data

s t r u c tu r e , and i t s c a p a b i l i t i e s were a good match for the p r e s e n t

system. This r e l a t i o n a l system was developed because there were no

com m ercial sy s tem s a v a i l a b l e when th e d e v e lo p m e n t s t a r t e d .

Developmental r e l a t io n a l systems were available but these systems were

used mainly for studies of query optim ization and data s t r u c tu r e s and

not fo r a p p lica tio n s .^ "3 6 Because there was an opportunity to enhance

the re la tio n a l model for engineering and d is tr ibu tive database a p p lic a

tions , a re la tio n a l information system called ARIS was developed.

A d e ta i le d d e s c r ip t io n of ARIS i s given in the appendix. The

fo llow ing d iscuss ion i s devoted to enhancements to and applications of

the re la t io n a l model to the present CAE system.

Data E n tit le s

Data e n t i t ie s in the re la t io n a l model are called a t t r ib u te s and can

be defined as the columns of data in the re la tion (2-dimensional tab le) .

www.manaraa.com

Because the FORTRAN language Is the main language for engineering com

putations, the data types and s tructures of a t t r ib u te s were enhanced to

conform to the FORTRAN language standards.

Any FORTRAN data type can be s to re d and r e t r i e v e d in an ARIS

database. In terac tive ly , only rea l , integer and character data types are

p r in te d (double p r e c i s i o n , com plex, and l o g i c a l have no t been

implemented). New to re la tio n a l systems, FORTRAN data arrays have been

implemented, and up to 3-dimensional arrays can be declared.

A concept unique to r e l a t i o n a l database systems is variable type

and dimension a t t r ib u te s , which were developed for parameter type r e l a

t i o n s (F ig . 15). With t h i s v a r ia b le type a t t r i b u t e , the type and

dimension are declared a t the time when the da ta i s s to re d in th e

database. Thus, scalars and arrays can easily be stored in a re la t io n .

A f in a l data type ca lled f i l e i s a c tu a l ly not a da ta type but a

s p e c i f i c a t io n of an a t t r i b u t e . The f i l e data type was created to add

sequential ASCII f i l e s (tex t or source da ta) to the da tabase by j u s t

providing the f i l e name and not p h y s ic a l ly s to r in g the data in the

database.

For la rg e text f i l e s , the f i l e specifica tion means that the exter

nal text f i l e can be manipulated by the computer systems e d i to r , thus

e l i m i n a t i n g the need to develop s p e c ia l e d i t in g fe a tu re s fo r the

database system. The ARIS can s t i l l search for character s tr ings in the

same way i t searches character type a t t r ib u te s , and the text f i l e s are

also printed with in te rac tive queries. With th is capab ili ty , paragraphs

of tex t can easily be saved, manipulated, and re trieved .

After evaluating the data requirements for the coupling of se v e ra l

p rog ram s, i t was d e te rm in e d t h a t in some c a s e s , s e v e ra l la rge

www.manaraa.com

35

bulk data f i le s were shared between programs. A ty p ic a l example i s

geometry. The geometry system (generation, display, and analysis) has

i t s own in ternal s truc tu re that no other program u ses . There a re two

ways to in co rpo ra te the geometry f i l e . The data can be placed in a

re la tio n as shown in Figure 16a or in a f i l e with ju s t the f i l e name in

the r e l a t i o n as shown in Figure 16b. This f i l e data type is best used

for these la rge data f i l e s because r e l a t i o n r e t r i e v a l can be slow

compared to j u s t read ing a data f i l e because of the database system

overhead. Also, data f i l e s that can change d ras t ica lly in size are best

handled by the opera ting system of the computer, which can e ff ic ie n t ly

a llocate and reclaim storage as the f i l e grows and sh r in k s . The f i l e

data type is handled by the database as a repeating data array, and thus

no special handling techniques are required for r e t r i e v in g the records

from the data f i l e . To denote that a data f i l e is owned by a database,

the database name is appended to the f i le name when i t is created.

D istributive Databases

As shown in the multi-user CAE system (Fig. 14), there are a number

of independent co n fig u ra tio n databases - global and each u se r 's . In

order to d is tr ib u te the data from one database to ano ther , make copies

o f complete d a tab ases , or make changes to database s truc ture , several

techniques were developed using and enhancing the r e l a t i o n a l a lg eb ra

language.

In the r e l a t i o n a l model, a concept of permanent and temporary

r e l a t i o n s i s used to so lve complicated queries. For example, to find

a l l the data generated by AWW and NHG, the query might take the form

www.manaraa.com

36

SELECT DB NAME FROM DB CATALOG
WHERE INITIALS EQ AWW GIVING TEMPI

SELECT DB NAME FROM DB CATALOG
WHERE INITIALS EQ NHG GIVING TEMP2

UNION TEMPI AND TEMP2 GIVING ANSWER

PRINT ANSWER

In the two SELECT commands, the re la tion DB_NAME is searched, and the

re su l ts are stored in sep a ra te temporary r e l a t i o n s c a l le d TEMPI and

TEMP2. The union operator combines the two re la tions to form the th ird

re la tion ANSWER, and the f in a l command prin ts the re su l ts .

In ARIS, the permanent database and the temporary database are

trea ted as one large database with the permanent database searched f i r s t

fo r a r e l a t i o n and then the temporary. By appending an extender to a

re la tion (.P for permanent and .T for temporary), r e l a t i o n s th a t e x is t

in both databases can be accessed separately. As an example, to deter

mine a l l the customized procedures developed by AWW and PRW, the lo ca l

procedure catalogs of these two users can be combined by opening the AWW

database as a permanent database and the PRW database as a temporary

database. The command

UNION PR_CATALOG.P WITH PR_CATALOG.T

s a t i s f i e s the query. By using th is command on every u se r 's database,

a l l the customized procedures in the system can easily be viewed.

There are four commands that are used in th is d is tr ibu tive database

system that use th is permanent/temporary f a c i l i ty . The TPCOPY command

makes a copy of the database (from temporary to permanent). A copy can

be used to begin a revision of an ex is ting database or make a copy of

another use r 's database or a global database.

www.manaraa.com

37

The UNION command adds tuples from one user’s r e l a t i o n to another

(d u p l ic a te tu p le s from the temporary are eliminated). Duplication is

determined by a comparison of primary key v a lu es . The primary key in

re la tions is the a t t r ib u te (or groups of a t t r ib u te s) whose value(s) mu3t

be unique for each tuple. The primary key a t t r ib u te (s) is declared when

the re la tion is defined.

The REPLACE command replaces tuples in one r e l a t i o n from another

based on the same primary key value in both re la t io n s . This command is

used to update information from another source, while re ta in ing da ta in

the permanent database tha t is not common to each re la tion .

The f in a l command i s RCOPY which co p ies a r e l a t i o n from one

database to another and erases the old re la t io n . This command updates a

work a c t iv i ty database to be compatible with another work a c t iv i ty .

There are a lso u t i l i t i e s to perform these a c t iv i t ie s by unloading

the database, database schema, re la tion data, or r e l a t i o n schema to an

ASCII f i l e . Thus database defin itions and re la tion data can be communi

cated across d ifferen t types of computers by copying the f i l e from one

computer to another and loading the ASCII f i l e into the database system.

This system has been developed for the PRIME and CDC computers.

Data Communication

Data communication between analysis programs, u se rs , and the con

f ig u ra t io n database i s through the data management system ARIS. As

shown in Figure 17, the ARIS system is divided into 3 layers - the host

computer software, the command l ib ra ry , and the in terac tive in terface.

To convert the system to another computer, 95 percent of the code

th a t needs to be changed is the in te r f a c e between the system and the

www.manaraa.com

host computer software. This conversion consists of the time and date

fu n c t io n s , s o r t in g routines (an Internal sorting is provided for re la

tions with les3 than 1000 tup les) , and disk random access routines. The

other 5 percent is to correct for the differences between the FORTRAN 77

compilers.

The in te ra c t iv e in terface consists of the query parse routine, the

executive routine, and the command structuring routine. The query parse

routine resolves the query into component parts (tokens). The executive

routine determines the desired func tion from the f i r s t token and ex

ecutes the associated command structuring routine. Finally, the command

structuring routine (one for each command) processes the tokens,extracts

the da ta needed by the command routine, and then executes that routine.

With the in te rac tive commands, databases can be c rea ted , r e l a t i o n s can

be defined, and data can be entered, reviewed, changed, and deleted.

The middle layer of the system consists of the command sub rou tines

that process the re la t io n commands. There ex is ts a subroutine for every

in te rac tive command. Thus, a l l the re la tio n a l operations are a v a i la b le

to the application programs that are available in te rac tive ly through the

command subroutine l ib ra ry .

The l i b r a r y can be inco rpora ted in to the eng ineering computer

programs for complete system in tegration . The l ib ra ry may a lso be used

by a pre-processor program that re tr ieves the data from the database and

formats the data into a f i l e that w ill be used as input by the a n a ly s is

p r o g r a m - d a t a i n t e r f a c i n g . As m e n t io n e d e a r l i e r , t h e

in tegra tion /in terfac ing question depends on the le v e l of performance

des ired and the d i f f i c u l t y in integrating the data interface d irec tly

www.manaraa.com

39

in to an analysis program. In e ither case, the command l ib r a r y can be

used.

Data Communication U t i l i t i e s

To ease the burden of data communication, in tegration and in te rfac

ing, two u t i l i t i e s have been developed - the reviewer for u se r /da tab ase

in te r a c t iv e communications and the data formatter for program/database

communications. Both the formatter and reviewer use the da ta tem plate

as a guide for specifying a subset of the configuration database and the

data dictionary for describing each data en ti ty in the database subset.

Template

A template is a l i s t of data e n t i t ie s in the configuration database

th a t i s used to specify data to be processed by the reviewer and/or the

formatter,

When the ARIS was developed, i t was assumed th a t a l l data com

munications would be through the i n te r a c t iv e query language for user

com m unication and th ro u g h the s u b r o u t in e l i b r a r y f o r program

communication. Because the configuration database became q u ite la rge

(10® da ta elements fo r only the aerodynamics, propulsion, tra jec to ry ,

and vehicle sizing analysis programs), editing the e n t i r e da tabase was

im p ra c t ic a l . Because the a n a ly s is programs accessed a subset of the

configuration database for input and ou tpu t, s p e c ia l e d i t in g programs

would have to be developed for each analysis program.

To reduce software overhead and programming mistakes in developing

the data communications with the configuration database, the template

was developed. The data tem plate i s very s im ila r in concept to the

www.manaraa.com

140

26external schema in sophisticated database management systems that were

developed for program communication only . In a paper e n t i t l e d "A

General Purpose Data Entry Program", a system was developed for program

3 7da ta communications with a custom data system. This system was

developed to avoid the computational overhead of large database manage

ment systems and to provide the da ta s t r u c tu r e s not supported by the

database systems ava ilab le to the author of the system. Within th is

system, a template was developed. The template contains the s p e c i f i c a

t io n s for the data to be en te red or a l t e r e d and a l l the information

needed to guide the data entry task which includes the sequence of data

to be e d ited and the d e s c r ip t io n o f the data. This template has the

essen tia l ingredients to support an in teractive input data reviewer - a

d e f in i t i o n of the subset of the database to reviewed, a defin ition and

s tructure of the reviewing sequence, and a d e sc r ip t io n of each of the

data e n t i t ie s .

The overhead and data s truc tu re problems described in Reference 37

do not e x i s t with the present database. ARIS was developed to support

the data s truc tures in the FORTRAN ana ly s is programs, and many of the

e x tra fe a tu re s in c u rre n t database management systems were not imple

mented to reduce computation overhead.

In the p resen t system, the template only describes the subset of

the database and the sequence in which the data will be processed. The

d e sc r ip t io n o f the data e n t i t i e s i s lo ca ted in the data d ic tionary

described in the next section.

The d a ta communication u t i l i t i e s support two types of da ta -

parameter data that consists of scalars and arrays and record data th a t

www.manaraa.com

s im u la te s FORTRAN f i l e s t r u c t u r e s . Template s p e c i f i c a t io n s for

parameter and record data are i l lu s t r a te d in Figure 18 and c o n s is t of

the following:

1) template name

2) sequence number (data re tr iev a l/s to rage
ordering)

3) re la tion name

4) data type (parameter or record)

5) number of data items (parameters or
a t t r ib u te s)

6) parameter names (or a t t r ib u te names)

7) number of key a t t r ib u te values

8) a t t r ib u te values

where the number o f d a ta items s p e c i f i e s the number of pa ram ete rs

s e le c te d from the re la t io n or the number of a t t r ib u te s in the re la tion

that comprise the f ie ld s of the record. The l a s t th ree items sp ec ify

the random access order of processing the re la tion (FORTRAN f i l e) - the

key f ie ld , the number of records to be accessed , and the value of the

key f i e l d in each record to be accessed. I f the key a t t r ib u te name is

blank, then the re la tio n is accessed l ik e a sequential FORTRAN f i l e .

Associated with the templates is a template catalog. An example of

the catalog is presented in Figure 19. The ca ta lo g c o n s is ts of the

following:

1) template name

2) description

3) input, output, or report generator

4) program name

5) custodian 's name

www.manaraa.com

42

6) date l a s t modified

The program name is included to inform the user which template can

be used to review the input before the program is executed or review the

output a f te r the program has been executed.

Data Dictionary

The data dictionary provides an inventory of a l l data e n t i t ie s that

a re s to red in the co n f ig u ra tio n d a tabase . I t contains a l i s t of a l l

re la t io n s in the da tabase , a d e sc r ip t io n of each r e l a t i o n and each

en ti ty in the re la tio n . As mentioned in the previous section, two types

o f r e l a t i o n s are c u r re n t ly supported by the d a ta com m unications

u t i l i t i e s : parameter and record. In addition to the data communication

u t i l i t i e s , the ARIS can be used to support any data s t r u c tu r e th a t can

be modelled with the enhanced re la tio na l model with the ARIS communica

tion subroutine l ib ra ry .

Each r e l a t i o n (parameter or record) is described in the data dic

tionary catalog by: ,

1) re la tion name

2) textual description

3) type (parameter, record, or re la tion)

4) number of parameters or a t t r ib u te s

5) custodian 's name

6) number of programs that can create th is data

7) creator program names

8) number of programs that use th is data

9) user program names

10) date created

www.manaraa.com

Each parameter or data f ie ld (a t tr ib u te) in the record (rela tion)

for each re la tion is described by:

1) re la tio n name

2) parameter name or data f ie ld (a t tr ibu te) name

3) tex tual description

4) physical un its (pounds, fee t , e tc .)

5) data type (rea l, in teger, or character)

6) number of characters i f character data type

7) dimension (none, 1, 2, or 3 subscripts)

■ 1 , 1 , 1 for scalars

- 1, 1, 1 for 1-dimensional arrays

- 1, m, 1 for 2-dimensional arrays

■ 1 ,m, n for 3-dimensional arrays

Examples of the data d ic tionary ca ta lo g and da ta d ic t io n a ry data are

given in Figures 20 and 21.

The creator and user program names a re used to generate a c ro s s -

re fe ren c e l i s t i n g between d a ta , and programs can be generated. This

l i s t i s use fu l when developing the da ta communications between new

programs and the system. Also, when a program requests input data from

the database and that data is missing, th is cross-reference l i s t can be

used to i n s t r u c t the engineer where th is data can be generated, e ither

from output created by an analysis program, from an external data f i l e ,

or input by hand through the keyboard. F inally , the data dictionary is

used with the in te rac tive data reviewer to id e n t i fy each da ta e n t i t y

through a description, physical un its , and data type.

www.manaraa.com

i»4

Reviewer

The reviewer Is the Interface between the user and the co n figu ra

tion database. I t is used to review and update the data in the database

as specified by the data template.

A ty p ic a l example o f a sc reen produced by the reviewer (Fig. 22)

shows th a t two vers ions of the da ta a re p resen ted a lo n g w ith the

d e sc r ip t io n and the physica l u n i ts o f the data. The description and

physical units are provided by the data dictionary (Fig. 21).

Parameter rev ie w er . - Rather than inventing a system that was un

fam iliar to the users, a l in e editor format was se le c te d for the para

meter reviewer th a t i s s im ila r to the te x t ed itors that ex is t on the

host computer system. A typical reviewer screen of information is shown

in Figure 22.

To move from screen to screen, the command

Nn

is used. The value n can be positive or n eg a t iv e . To go to the next

sc reen , the command N is used. To review two screens from the current

screen, the command N2 is used. To see the l a s t screen a la rg e number

for n is used, and to go to the f i r s t screen, a large negative is used.

To compare the d if f e re n c e s between two sep a ra te da tab ases , the

command

DIFFON

i s used. Only the lines in which there is a difference in value between

the present and old values w il l be d isp lay ed . All l in e s can be d i s

played by turning off the difference command with the

DIFFOFF

command.

www.manaraa.com

To change data, the following commands are used:

#,P,0 — change a l l present values to the old values

2,P,0 — change present value to old value on line 2

J<,Pf55 — change present value to 55 on lin e 4

6,P,'NEW' — change present value to 'NEW1 on line 6

8,P,M — modify present value on line 8

With the modify command, the value is displayed and can be modified by

the keyboard by typing below the value. As examples:

124.65E-02 — displayed on screen
? 9 3 — 9 and 3 keyboard input

129.65E-03 — resu lting change

129.65E-03 — displayed on screen
? ' — delete characters

129.653 — resu lting change

129.653 — displayed on screen
? “11< — inse r t '11 '

11129.653 — resulting 'change

For character data type, only the f i r s t 16 characters are displayed on a

reviewer screen. To view the en tire character s t r in g , the modify com

mand is used to display up to 132 characters.

Other commands include:

R — Redisplay the current screen

Q — Quit editing and do not save changes

E — End editing and save changes

A number of other commands have been id en tif ied but have not been

implemented. These commands include value arithmetic (m ultiplication,

d ivision, addition, and subtraction), change values in a range of l in e s

or elements in a a rray , and value search. An example of the parameter

reviewer will be presented in the section e n ti t le d Sample Problem.

www.manaraa.com

46

Record rev iew er . - The record reviewer i s very s im ila r to the

parameter reviewer, but the da ta i s presented in columns across the

screen (Fig. 23). There is a problem in presenting record data because

only 7 columns of data can be presented on a 132 column screen and and 5

columns on a 80 column sc reen , assuming a 16 f ie ld width minimum for

rea l data. Thus, the reviewer is used much like a ty p ic a l sp readshee t

program such as Visicalc or Lotus 1-2-3.

To display the desired columns of inform ation the follow ing com

mands are used:

Cn — displays the re la tiv e columns numbers
from present where:

n - 1, displays the next group of
columns

- -1 , displays the previous group
of columns

- 99, displays the la s t group of
columns

—99, displays the f i r s t group of
columns

D,1 ,9 ,2 ,- ,4 — displays columns 1, 9, 2, 3, and 4

The da ta e d i t in g commands are s im ila r to the parameter e d i to r

commands except the column number(s) must be specified:

»,P,0 — change a l l present l ine and column
values to old

1,P,0,* — change a l l present values to old in
l in e 1

2 ,P ,0,3 — change present value to old value in
l in e 2/column 3

2,P,3,55 ---- change present value to 55 in
l in e 2/column 3

To d isp lay and update character s tr ings greater than 16 characters, the

modify command must be used.

The o ther commands to r e d is p la y the screen , q u i t , and end are

iden tica l to the parameter commands.

Reviewer uses. - There are many uses for the "eviewer. F i r s t , the

data dictionary is the template for the en tire database. Thus i t can be

www.manaraa.com

used by the database adm inistra to r or an engineer to review the complete

database or compare versions of the database: h is personal versions, h is

version with other s p e c ia l i s t s , or h is versions with permanent v e rs io n s

t h a t r e f l e c t v a r io u s s ta g e s o f a la rge p ro jec t. Second, any template

(program input or program o u tp u t) can be used to review the d a ta and

compare i t to p rev io u s c a s e s . F ina lly , summary templates can be con

s tru c ted and used w ith th e rev iew er fo r f i n a l r e p o r t s or management

information th a t needs to be reviewed in te ra c t iv e ly .

Formatter

The f o r m a t t e r was o r i g i n a l l y viewed as a u t i l i t y t h a t used a

template to specify d a ta to be r e t r i e v e d from the d a tab ase and then

a u to m a t ic a l ly c re a te an input f i l e for an analysis program - a general

system pre-processor.

A f te r rev iew ing the d a ta requirem ents of the various app lica tion

programs, the data generated by one analysis program was u su a lly in the

wrong form fo r in p u t to the next program. In many cases the data must

be converted to d i f fe re n t p h y s ic a l u n i t s , m a te r ia l i z e d from e x i s t i n g

d a ta (e .g . g ross w eight i s the sum of component and fuel weights), or

completely re s tru c tu red l ik e geometry data th a t i s d i f fe re n t fo r a lm ost

every app lica tion .

Because the transform ations and conv ers ion s of d a ta can be very

complicated, the logic of a computer program i s needed. Because of th is

complexity, the idea of an automatic form atter fo r in p u t f i l e c r e a t io n

was dropped.

The curren t form atter i s a program th a t generates FORTRAN code tha t

can be used by any program to r e t r i e v e d a ta from the c o n fig u ra tio n

www.manaraa.com

48

a s d e s i r e d . The da ta tem plate i s used to define the data and the

re t r ie v a l sequence. The data d ic t io n a ry i s used to sp ec ify the da ta

s t r u c tu r e and data type. The fo rm atte r uses the tem plate and data

dictionary information to automatically c re a te code for communicating

d a ta between the c o n fig u ra tio n database and the application program,

thus freeing the system a d m in is t ra to r from w r i t in g the code by hand

using the ARIS subroutine l ib ra ry . Kenny Jones from Computer Sciences

Corporation developed the precompiler program.

Figure 24 shows an example of an input subroutine developed u t i l i z

ing the FORTRAN code generated using the tem plate T_EXAMPLE (F ig . 18)

and the data dictionary (Fig. 21). As shown in th is subroutine, a l l the

code to specify the data types and database re tr iev a l is generated. The

implementing programmer must in te g r a te t h i s da ta with the analysis

program. A labe led common s ta tem ent was used to communicate t h i s

r e t r i e v e d information in the program. Other techniques could have been

used such as including parameters in the subroutine statement or w r i t

ing a f i l e that is read by another subroutine in the analysis program.

Problems can a r i s e when the v a r ia b le names in the program are

d ifferen t than the data names in the configuration database. Currently,

the problem is being solved by changing a l l the pre-compiled v a r ia b le

names to the program names using the host source ed ito r . A more elegant

approach would be to add the program v a r ia b le names to the tem plate

s p e c i f i c a t i o n so the fo rm atte r could make t h i s name s u b s t i tu t io n

automatically. Other problems such as data transformations/conversions

from the c o n fig u ra tio n database to the a p p l ic a t io n program must be

implemented by the system programmer.

www.manaraa.com

The use o f the formatter in program interfacing and in tegration is

shown in Figure 25. For program in terfac ing , the fo rm atte r i s used to

c r e a t e th e code fo r r e t r i e v i n g the c o n fig u ra tio n d a ta . The pre

processor program transforms and converts th is data (i f necessary), and

then c re a te s an inpu t f i l e fo r the a n a ly s is program. The analysis

program reads th is input, computes, and c re a te s a r e s u l t s f i l e . The

fo rm atte r is also used to create code for the post-processor program to

s to re data in to the configuration database. The post-processor program

reads the re su l ts f i l e , transforms and converts the data, and stores the

re su l ts into the configuration database.

The integrated program coupling is similar to the interfaced cou-

p l i n g , but a l l t h e d a t a b a s e c o m m u n i c a t i o n s and d a t a

transform ations/conversion subroutines are located in the application

program.

www.manaraa.com

IMPLEMENTATION

50

As shown in the CAE system arch itecture (Fig. 14) the m ajo r ity of

the system c o n s is t s of d a ta . Thus, a large e ffo r t was devoted to the

development of the data management system (ARIS) that supports the data

system - configuration data and meta data.

The global database in the CAE system is implemented as a directory

o f f i l e s in the host computer. The d i r e c to ry c o n s is ts of the meta

database which d esc r ibes the o th er f i l e s in the d i re c to ry : the con

f ig u r a t io n da tab ases , the program f i l e s , and the l ib ra ry f i l e s (Fig.

26). The meta database consists of r e l a t i o n s defined for the program

l i b r a r y (F ig . 9) , the procedure l i b r a r y (F ig s . 10 and 11), the con

figuration database catalog (Fig. 12), the data dictionary (Figs. 20 and

21), the template l ib ra ry (Figs. 18 and 19) and the user catalog.

The program f i l e s consist of the source f i l e , the executab le run

f i l e , and the procedure f i l e tha t is used to build the executable run

f i l e . The l ib ra ry f i l e s consist of the source f i l e s of the lib ra ry used

by the a n a ly s is programs th a t a re not supported by the host computer-

system administrator.

The c o n f ig u ra tio n da tabases a re implemented as sep ara ted ARIS

databases. They co n ta in a l l the da ta th a t i s described by the data

dictionary (Figs 20 and 21).

The following procedure i l l u s t r a te s how a new program is integrated

into the system (also shown schematically in Figure 27). The CAE system

administrato*' must do the following:

1) Define input and output requirements of the program.

2) Check the data dictionary for compatible input and output data
with existing data e n t i t ie s .

www.manaraa.com

51

3) Develop the defin itions for any new re la tio ns (a t t r ib u te s and/or
records) that are needed.

4) Enter the re la tion defin itions and data en ti ty descriptions into
the data dictionary.

5) Enter program source, executable run f i l e , procedure f i l e , and
library- source i f needed to the global d irectory .

6) Enter program description into the program l ib ra ry .

7) Enter execution procedure and description into the procedure
l ib ra ry .

8) Develop input and output templates, and enter the templates and
description into the template l ib ra ry .

At th is time the ARIS and formatter are used to do the following:

1) To create a golden database (proven input/output data values for
program demonstration), compile a configuration database, copy
the golden example into the new database, and place null values
into the newly defined data e n t i t ie s .

2) Enter the golden database into the global directory and update
a l l previous configuration databases.

3) Precompile input and output code using the formatter.

The system administrator must now complete the following:

1) Complete the development of the input and output routines
(incorporate the precompiled code into the application program
i f necessary).

2) Enter programs and defin itions into the program l ib ra ry i f pre-
or post-processors were developed.

3) Enter new data values into the golden configuration database
using the reviewer and/or program execution.

4) Execute new program and check re su l ts .

The local databases now must be updated with the new changes. The

lo c a l databases are implemented s im i la r ly to the global databases in

which a directory is created for each user. The user environment con

s i s t s of a configuration l ib ra ry which consists of copies of the global

configuration databases and a user description of these copies, subsets

of the global templates with a user description, personalized procedures

www.manaraa.com

52

developed by combining global procedures, and a log fo r design se ss io n

comments.

www.manaraa.com

53

SAMPLE PROBLEM

A re la t iv e ly t r iv i a l problem is presented to demonstrate the many

features of the integration system. The programs used (Fig. 9) ares

1) GEO_DIG - d ig it iz e an a i rc ra f t shape from an
” engineering drawing with an

in terac tive graphics tab le t

2) HABFRMT - convert d ig itized geometry to
Hypersonic Arbitrary Body (HAB)

38geometry format
3) IMAGE ̂ - plot HAB format vehicle

U) GE0__PR0P - compute the HAB geometric
“ properties: areas, volumes, center-

of-area location, area moments and
products of in e r t ia

5) WTS_BAL - compute weights and center-of-
” gravity location

6) HYPERPRE - preprocessor to create an input f i l e
for HYPER

7) HYPER - compute hypersonic aerodynamics

The program and data flow are shown in Figure 28. The body and

wing geometry i s d ig it iz e d from an engineering drawing with a graphics

tab le t using the program GEO_DIG. The HABFRMT program is then used to

convert the d ig i t i z e d da ta to HAB format to be used by two standard

programs: IMAGE fo r p lo t t in g the panelled veh ic le and GEO_PROP for

computing the geometric c h a r a c t e r i s t i c s . By applying a unit weight

(pound per square foot) d is tr ibu tion on the surface areas of each of the

components, the t o t a l vehicle weight and center-of-gravity location of

the to ta l vehicle can be computed with WTS_BAL. A very simple hyper

s o n ic ae rodynam ics program , HYPER, t h a t uses veh ic le geometric

parameters (wing area, leading edge sweep, t r a i l in g edge sweep, e tc .) is

www.manaraa.com

54

f i n a l l y used to compute the trim conditions of the vehicle. To create

the input f i l e for HYPER, the preprocessor HYPERPRE is used.

The command to 3 ta r t the system is

AIDES AWW

where AIDES i s the present Aerospace Integrated Design and Engineering

System and AWW are the users i n i t i a l s . I f the in i t i a l s are not found in

the u se rs ca ta lo g (Fig. 14), then the user information must be entered

into the system.

The current databases and the la s t log entry are then displayed:

CURRENT ACTIVE DATABASES:

PRESENT - MARTIN2 - MMC1 WITH NEW WING
OLD - MARTIN - MARTIN TASK II SSTO

LAST LOG ENTRY > CCV TECHNOLOGY WEIGHTS - 01/10/84

#* enter return to continue ##

The da ta for the a c t iv e databases and log i s found in the database

catalog (Fig. 12) and the a c t iv i ty log (Fig. 13). The executive menu is

displayed a f te r return is entered:

* « » » « « * * » * * » * » * * « * * * * * *
* »
* A I D E S EXECUTIVE *
* *

E - TO EXECUTE PROCEDURES

E, PROCEDURE namel [, PROCEDURE name2] . . .

L - TO LIST PROCEDURES

L (return) - to l i s t a l l procedures
L, PROCEDURE name - to l i s t procedure commands

www.manaraa.com

55

U - TO DISPLAY UTILITIES MENU

Q - TO QUIT

>E,GEO_DIG,IMAGE,GEO J»RP,WTS_BAL,HYPER

All the above commands are se lf explanatory except the u t i l i t i e s

menu. The u t i l i t i e s menu consists of commands for:

1) l i s t in g the global and local configuration database catalog,
procedure catalog, program catalog, or template catalog,

2) making a copy of a configuration database, procedure, or
template,

3) editing the local catalogs, log, procedures, or templates,

4) activa ting a d iffe ren t configuration database (present or o ld).

The command E followed by the five procedure names executes a l l the

procedures in the p resen t system (F ig . 10). F i r s t , the vehic le is

d ig itized using the geometry in Figure 29. The template T_DIG_0UT has

been incorporated into the GE0_DIG program for data communications. The

next procedure command allows the user to review the d ig i t i z e d data (a

sim pler example with l e s s da ta w il l be presented l a t e r) . Then the

d ig itized data is transformed into panel geometry and parameter da ta by

the HABFRMT program. Thus, with th is geometry procedure, geometry can

be manipulated in graphical form in the GE0J3IG program and in d i g i t a l

form by the reviewer. Sometimes th is d irec t data manipulation is neces

sary because the d i g i t i z e r and graphics screen r e s o lu t io n a r e not

adequate.

The IMAGE procedure displays the panel geometry (Fig. 30).

www.manaraa.com

The WAB procedure computes the geometric properties. In this

procedure, the reviewer is f i r s t used to ed it the unit weights fo r each

component:

x x
* AIDES *
X X

• R E V I E W E R *
x x
xxxxxxxxxxxxxxxxxxx

Template - T_UNIT_WTS

SCREEN 1

L# P—VALUE 0_VALUE DESCRIPTION UNITS

1 8 65 8.87 WNG COMP WT LB/FT2
2 5.M2 5.M2 BDY COMP WT LB/FT2
3 6.M2 6:M2 TAIL COMP WT LB/FT2
M M.55 M.55 BFLP COMP WT LB/FT2

EDIT
>1 ,P,9.65
>2,P,6.‘50
>R

(change present value on line 1 to 9.65)
(change present value on line 2 to 6.50)
(re -p r in t the screen)

SCREEN 1

L# | P_VALUE | 0_VALUE | DESCRIPTION | UNITS

1 9 65 8.87 WNG COMP WT LB/FT2
2 6.50 5.M2 BDY COMP WT LB/FT2
3 6; M2 6:M2 TAIL COMP WT LB/FT2
M M.55 M.55 BFLP COMP WT LB/FT2

EDIT
>E (save changes and end reviewer session)

After the u n i t weights are e d i te d , the geometric p ro p e r t ie s of the

www.manaraa.com

57

v eh ic le (volumes, a re a s , c e n te r -o f -g ra v i ty locations, and moments of

in e r t ia) are computed by the GEO_PRP program and the weight p ro p e r t ie s

(weight and weight c e n te r -o f -g r a v i ty lo c a t io n s) are computed by the

WTS_BAL program.

In the hypersonic procedure, HYPER, the reviewer is used to change

the geometric parameter data (Fig. 15), the center-of-gravity lo c a t io n ,

and the hypersonic input parameters. Then the preprocessor, HYPERPRE,

creates an input f i l e for the HYPER program c a l le d HYPIN. The hyper

sonic program computes the p i tc h in g moment and p lo ts the re su l ts as

shown in Figure 31 •

With t h i s CAE system, the e ffec ts of geometry and weight d is tr ib u

tion on hypersonic trim can be determined.

www.manaraa.com

58

DATA INTERDEPENDENCE

One of the major problems in m ain ta in ing the i n te g r i t y of the

database in a loosely coupled system is data interdependence. The flow

of programs and data in the sample problem is i l lu s t ra te d in Figure 28.

Suppose that the geometry has been generated, the weight properties have

been computed, and the next s tep i s to review the input data to the

HYPER program. Figure 15 shows the geometry param eters . I f the wing

area, STOTAL, is changed in the reviewer, then the geometry has changed,

and a l l data associated with the geometry data (like weight p ro p e r t ie s)

i s now in e r ro r because i t i s based on the previous wing area. This

problem of a data en ti ty affec ting one or more o ther da ta e n t i t i e s is

called data interdependence.

Business data systems do not have the degree of f l e x i b i l i t y in

order of program execution that is needed by an engineering system. The

path through the applications in business systems i s r ig id to maintain

the highest degree of data in teg rity possible. Mechanisms are available

to check each data entry for correctness and no data can be entered into

the database unless a l l in teg r ity checks are passed.

In an engineering system, the user should know the upper and lower

bounds on a da ta va lue , or he should not be using the a p p l ic a t io n

program. The usual business data i n t e g r i t y mechanisms of da ta com

parisons a g a in s t bounds, ranges, or s t a t i s t i c s are not very useful and

mostly represent extra system overhead.

A da ta in terdependence i n t e g r i t y mechanism, on the other hand,

would be very useful in a loose ly coupled system as a warning system

a g a in s t improper d a ta . In the above wing area example, the engineer

www.manaraa.com

59

might have looped through a l l the programs many times, and learned th a t

the cen te r-o f-g rav ity location did not change s ign if ican tly as the wing

geometry changed. Thus, a quicker i t e r a t i o n loop would be j u s t to

change the wing p a ra m e te r s w ith th e re v ie w e r and compute the

aerodynamics. Once a wing geometry was found th a t s a t i s f i e d the trim

c o n d it io n , then a fu l l loop through a l l the programs would be completed

to verify the f ina l r e s u l ts . In t h i s case , the data interdependence

i n t e g r i t y mechanism would be used as a warning system, not a control of

the system.

A cursory a ttem pt was made a t defining an in teg r ity mechanism for

th is data interdependence problem. The implementation of the i n t e g r i t y

system is based on the flow of data through the programs (Fig. 32). The

in teg r ity mechanism assumes that a l l the output of a program i s a func

tion of a l l the input. Thus, for example, i f any data is changed in the

unit weights re la tion , UNIT_WTS, then the data in the weights properties

re la tion , WT_PROP, would have a warning tag. I f the HYPERPRE program is

executed d irec tly a f te r the unit weights re la tio n has been changed with

th e r e v ie w e r , th en a w arn ing would be d isp layed th a t the weight

properties may be in e rro r , and th is error could be corrected be execut

in g th e WTS_BAL program . The p ro g ra m /r e la t io n r e l a t io n s h ip i s

established in the re la tio n catalog (Fig. 20).

In the case where the output of a program is changed, i t is assumed

that a l l the output and the input data that created th i s output a re in

e rro r . For example, i f the geometry characterics , GE0_CHAR, are changed

by the reviewer, the re la tio ns DIG_0UT and XYZ'S are tagged. Becase the

r e l a t i o n XYZ'S i s used as input to the program GE0_PRP, then the r e la

tion GEO PROP is tagged. This tagging process is continued through the

www.manaraa.com

data flow of the system. A change in geometry creates a tag on a l l the

data used by the program that need geometry information or information

based on geometry.

The data dependency graph (Fig. 32) i s defined from the da ta flow

through the programs, which is defined by the c re a to r and the user

program l i s t in the re la tio n catalog (Fig.2 0) . Any time data is updated

in the database by programs or in te rac tive ly by a U3er, the data depend

ency graph is processed a t the ap p ro p r ia te p o s i t io n and the a f fe c te d

re la tions are tagged.

www.manaraa.com

STATUS

61

After defining the requirem ents fo r the system, a l l e f f o r t was

directed towards data management because almost a l l the functions of the

system depended on th is development. The ARIS system (in the appendix)

was developed in two y ea rs . I t has been used in the development of

several application programs that have been integrated into the system:

geometry, mission modelling, rocket engine database, and an aerodynamic

database.

A prototype system was developed exclusively around the ARIS system
g

using several o rb i ta l transfer vehicle analysis programs. The r e s u l t

of th is prototype was that complete database v i s ib i l i ty was needed which

r e s u l te d in the development of the rev iew er. Data input in to the

d a ta b a s e was j u s t as im portant as ou tpu t; th u s , the c a p a b i l i ty of

replacing data with no in te r n a l da tabase checking was implemented.

Replacements can be made when no more tuples are added to the current

re la tion and the primary key a t t r ib u te s are not changed. This re p la c e

ment f e a tu re speeds storage by 50 percent and happens approximately 75

percent of the time. F inally , i t was found that i n t e g r i t y in te rdepen

dency tags with date and time on individual data en tr ies made the system

prohibitively slow with i t s overhead. The new system being developed

uses a compiled in terdependency graph and op e ra tes a t the re la t io n

leve l.

The f i n a l d e t a i l s o f the user in terface are close to completion.

Dr. Schwing of Old Dominion U n iv e rs i ty i s implementing the u t i l i t y

programs for managing the co n fig u ra tio n databases and the in te ra tive

www.manaraa.com

62

command struc tu re for the user. A single-user system should be opera

tiona l soon.

www.manaraa.com

CONCLUSIONS

63

An approach for coupling independent eng ineering programs fo r

design and analysis of aerospace vehicles was developed. I t consists of

a loosely coupled network of eng ineering programs th a t communicate

through a r e l a t i o n a l information system. The system architecture con

s i s t s of the engineering programs, a user in te r f a c e for managing the

system, a catalog system for maintaining data about the programs, data,

and u se rs , in d iv id u a l work a reas fo r each e n g in e e r , and a g lo b a l

da tabase th a t i s used as a reposito ry of a l l engineering data created

for central use. A re la t io n a l information system was developed for th is

sys tem to communicate e n g in e e r in g d a ta with a FORTRAN language

in te rface . Finally , two u t i l i t i e s were developed to a id in i n te r a c

t iv e ly e d i t in g the database and communicating data to the analysis

programs.

The system architecture provides management of the complete system

through u t i l i t i e s to maintain da ta about the da tabase , programs, and

users and an executive for executing programs. The system is completely

v is ib le to the user because descriptions o f each e n t i t y o f the system

are provided. The g lobal configuration databases can be reviewed and

c o p ie d , and the l o c a l c o n f i g u r a t i o n d a ta b a s e s can be e d i t e d .

F l e x i b i l i t y i s provided by the data management system because there is

minimum impact on the system when new programs or data are added to the

system, and the programs can be executed in e ither the batch or in te rac

tive mode in any lo g ic a l o rd e r . F in a l ly , da ta in terdependence i s a

major problem in loosely coupled systems, and a cursory attempt is made

to define an in teg rity mechanism for a llev ia ting th is problem.

www.manaraa.com

REFERENCES
64

1 "Space S h u t t le Synthesis Program (SSSP), Final Report." General
Dynamics Convair Division Report No. GDC-DBB70-002, December 1970.

2 G a r r i s o n , J . M. "Development of a W eight/S izing Synthesis
Computer Program." McDonnell-Douglas Astronautics Company, MDC-E0746,
February 1973.

■3
G latt, C. R. and Hague, D. S. "ODIN—Optimal Design In te g ra t io n

System." NASA CR-2492, February 1975.

4G la t t , C. R ., Hague, D. S . , and Watson, D. A. "D ia lo g : An
Executive Computer Program for Linking Independent Programs." NASA CR-
2296, September 1973.

5
W i lh i t e , Alan W. "The Aerospace Vehicle I n te r a c t iv e Design

System." Presented at the 19th Aerospace Sciences Meeting, AIAA Paper
81-0233, January 12-15, 1981.

g
W ilh ite , Alan W., Johnson, S .C ., and C risp , V. " In te g ra t in g

Computer Programs fo r Engineering Analysis and Design." Presented at
the AIAA 21st Aerospace Sciences Meeting, AIAA Paper 83-0597, January
10-13, 1983.

7
Gott, B. "The Scope of Computer-Aided Design," Computer-Aided

Design. Proceedings of the IFIP Working Conference on Principles of
Computer-Aided Design, North Holland Publishing Co., 1973, pp. 1-18.

O
Gregory, S. A. "Design and the Design Method," The Design Method.

Plenum Publishing Corp., New York, 1966, pp. 3-10.

q
H e ld e n f e l s , R. R. " I n t e g r a t e d , Computer-Aided Design of

A i r c r a f t . " Presented a t the AGARD Conference on A i r c r a f t Design
Integration and Optimization, CP-147-Vol.1, Oct. 1973-

10Meyer, D. D., Anderton, G. L., and Crowell, H. A. "The Design
P r o c e s s . " P re se n te d a t the AIAA A irc ra f t Systems and Technology
Conference, AIAA Paper 78-1483, August 21-23, 1978.

11 Woodson, T. T. I n t r o d u c t i on to Engineering. McGraw Hill Book
Company, 1966.

12Meyers, Ware. "CAD/CAM: The Need for a Broader Focus," Computer,
Vol. 15, No. 1, January 1982, pp. 105-117.

www.manaraa.com

65

130man, B. H. "Vehicle Design Evalution Program (VDEP)." NASA CR-
145070, January 1977.

14Gregory, T. J . "Performance Trade-Offs and Research Problems for
Hypersonic T ran sp o r ta tio n s ." AIAA Journa l of A i r c r a f t , July-August
1965.

15Roch, A. J . "Missle Integrated Design Analysis Systems (MIDAS)."
P resented a t the AIAA 19th Aerospace Sciences Meeting, AIAA Paper 81-
0285, January 12-15, 1981.

1^D eB ilzan , C. C. and P i c k e t t , H. E. "SIZE: The Aerospace
C o r p o r a t i o n 's Modular Vehicle Design Program." Presented a t the
AIAA/SAE 11th Propulsion Conference, AIAA Paper 75-1275, September 29 -
October 1, 1975.

1 7W ennagel, G. J . , L o sh ig ian , H. H., and Rosenbaum, J . D.
"RAVES: Rapid Aerospace Vehicle Evaluation System." Presented a t the
1975 ASME Winter Annual Meeting, November 30 - December <4, 1975.

18Wennagel, G. J . , Mason, P. W., and Rosenbaum, J . D. "IDEAS,
Integrated Design and Analysis System." (Preprint) 680728, Soc. Automot.
Eng., October 1968.

1 9 "IPAD: I n t e g r a t e d Programs for Aerospace-Vehicle Design."
NASA CP-21 il3r September 1980.

20 Leondis, Alex. "Large Advanced Space Systems Computer-Aided
Design and Analysis Program," NASA CR-159191, 1980.

21 Vos, R. G ., e t a l . "Development and Use of an In te g ra te d
Analysis Capability." AIAA Paper 83-1017, 1983.

22 de Kruyf, J . , Ferrant e , J. G., and Dutto, E. "ESABASE, A
Computer-Aided Engineering Framework F a c ilita t in g Integrated Systems
Design." ESA Journal, Vol. 6, 1982, pp.415-429.

23Dror, B. "Computer-Aided Design at Is rae l A ircraft I n d u s t r i e s ,"
Computers & Graphics, Vol 3 . , Nos. 2/3, 1978, pp. 93-105.

24Fulton, R. E., e t a l . "Application of Computer-Aided A irc ra f t
Design in a M u l t i d i s c i p l i n a r y E n v iro n m en t." P re se n te d a t the
AIAA/ASME/SAE 14th S t ru c tu re s , S t r u c tu r a l Dynamics, and M a te r i a l s
Conference, AIAA Paper 73-353, March 20-22, 1973.

www.manaraa.com

66
25Schwing, J . L. "User I n te r f a c e fo r In te g ra te d Computer-Aided

Design Systems,” NASA Research Grant NCCI-74, June 1984.

26Date, C. J . An Introduction to Database Systems. Addison-Wesley
Publishing Company, February 1982.

27Study Group on Data Base Management Systems. In te r im Report.
ANSI/X3/SPARC, pp. II16-II28, February 1975.

28Codd, E. F. "A Relational Model of Data fo r Large Shared Data
Banks." CACM 13, No. 6, June 1970.

29Sidle, Thomas W. "Weaknesses of Commercial Data Base Management
SYSTEMS in Engineering A p p l ic a t io n s ." Presented a t the 17th Design
Automation Conference, 1980, pp. 57-61.

30Fe lipp a , C. A. "Database Management in S c ien tif ic Computing-I.
General Description," Computers & S truc tu res , Vol. 10, 1979, pp. 53-61.

31. Bandurski, A. E. and J e f f e r s o n , D. K. "Data Description for
CAD." Presented a t the ACM SIGMOD Workshop, 1975.

32J G rabow ski, H. and E igner, M. "Employing a R e la t io n a l Data
Structure in a CAD System." Proceedings of the In te r a c t iv e Techniques
in Computer Aided Design, September 21-23, 1978, pp. 367-377.

^"Engineering and S c ien t if ic Data Management." NASA CP-2055, May
18-19, 1978.

34 Astrahan, M. M. e t a l . "System R: A R e la t i o n a l Data Base
Management System," Computer, Vol. 12, No. 5, May 1979, pp. 42-48.

35 Stonebraker, M., Wong, E ., and Kreps, P. "The D esign and
Implementation of INGRESS," ACM Transactions of Database Systems, Vol.
1, No. 3, September 1976, pp. 189-222.

? 363 Erickson, Wayne J . "RIM — A R e la tio n a l Database Management
System." CDC VIM 34 Mpls, Control Data Corp., 1981, pp. 1-80 through 1-
85.

37Jacky, J . P. and K a le t , I . J . "A General Purpose Data Entry
Program," Computing P rac tice s , Vol. 26, No. 6, June 1983, pp. 409-417.

^Gentry, Arvel E. "The Mark IV Supersonic-Hypersonic A rb i t ra ry
Body Program," AFFDL-TR-73-159, November 1973.

www.manaraa.com

67
39G latt, C. R. "Image: A Computer Code for Generating Picture-Like

Images of Aerospace Vehicles." NASA CR-2H30, September 197*4.

www.manaraa.com

RECONFIGURE

NO
COMPARE

YES

TRIAL
CONFIGURATION

DESIGN
CONSTRAINTS,

PERFORMANCE
RESULTS .

ANALYSIS

FINAL
DESIGN

DESIGN
EXPERIENCE

CONFIGURATION
REQUIREMENTS

Fig 1 - The design process

WEIGHTS

i i

GEOMETRY

PROPULSION

AERODYNAMICS

PERFORMANCE

Fig 2 - Data communication between the engineering
sp ec ia lis ts

www.manaraa.com

DATA TRANSFERED BY GLOBAL AND DATA FILES

PROGRAM CPROGRAM A PROGRAM B

(a) Close-coupled integration

DATA TRANSFER THROUGH PROGRAMS BY INPUT FILES

INPUT, INPUT PROGRAM CPROGRAM A PROGRAM B

(b) Close-coupled interfacing

DATA TRANSFERED THROUGH A CENTRAL DATABASE

PROGRAM C

DATABASE

PROGRAM BPROGRAM A

(c) Loose-coupled integration

DATA TRANSFERED THROUGH A PRE-PROCESSOR AND CENTRAL DATABASE

PROGRAM CPROGRAM BPROGRAM A

INPUTINPUT INPUT

PRE-PROCESSORPRE-PROCESSORPRE-PROCESSOR

DATABASE

(d) Loose-coupled interfacing

Fig 3 - Program coupling techniques

www.manaraa.com

•Program In terface Definition

•Complete Database Definition

•Access Structure Definition

DISK

STORAGE

EXTERNAL SCHEMA

INTERNAL SCHEMA

CONCEPTUAL SCHEMA

APPLICATION PROGRAM

Fig *4 - Three schema database architecture

www.manaraa.com

VEHICLE

V# VNAME ENGINEER DATE

V1
V2
V3

SHUTTLE
FIGHTER
TRANSPORT

REHDER
NAFTEL
CRUZ

01/05/75
06/17/814
11/06/73

SUBSYSTEMS

S# SNAME MASS

51
52
53
S14

SEAT
AVIONICS
JET ENGINE
ROCKET ENGINE

150
500
2000
2500

PACKAGING

V# S# XCG YCG ZCG

V1 S1 20 0 10
V1 S2 18 0 10
V1 SU 95 -10 20
V1 S4 95 10 20
V3 S1 10 0 5

Fig 5 - Maas properties re la tiona l database

www.manaraa.com

11/06/7301/05/75 FIGHTER CRUZ'REHDER NAFTEL RANSPORTSHUTTLE

20-10 20

S2

AVIONICS 150 2000ROCKET ENGINE 2500 500 SEAT JET ENGINE

RECORDS: VEHICLES, PACKAGING, SUBSYSTEMS
SETS : Vff, S#

Fig 6 - Mass properties network database

www.manaraa.com

{SHUTTLE {REHDER (01/05/75j

iFIGHTER 1 NAFTEL I06/17/8M1

(TRANSPORT I CRUZ | 11/06/731

ISEAT (l501

(ROCKET ENGINE!

j 95 I 0~Ho'

195 1° I '20!

lap lo l ioI

IsEAT |150>

ho 1° is I

Fig 7 - Mass properties h ierarchical database

www.manaraa.com

EXECUTIVEUSER

(USER INTERFACE)

CONFIGURATION
LIBRARY

TEMPLATE
LIBRARY

ACTIVITY
LOG

DATAPROGRAM
LIBRARY

PROCEDURE
LIBRARY DICTIONARY

• RELATION
CATALOG

• TEMPLATE
CATALOG

• PROCEDURE
CATALOG

• CONFIGURATION
CATALOG

• PROGRAM
CATALOG

• RELATION
• DEFINITION
• DESCRIPTION

• CONFIGURATION
DATABASES

• TEMPLATES• PROGRAMS • PROCEDURES

Fig 8 - Single-user CAE arch itecture

" V i

www.manaraa.com

PROGRAM CATALOG

P_NAME VER DATE DESCRIPTION

GEO DIG
HABFRMT
IMAGE
GEO PRP
WTS BAL
HYPERPRE
HYPER

1
1
1
1
1
1
1

01/06/8*1
01/06/8*1
01/06/8*1
01/06/8*1
01/06/8*1
01/06/8*1
01/06/8*1

DIGITIZE WING/BODY/TAIL/BODY FLAP
CONVERT DIG OUT TO HAB FORMAT
DISPLAY HAB GEOMETRY
COMPUTE PROPERTIES FROM HAB GEOM
QUICKIE WEIGHTS AND BALANCE
PREPROCESSOR FOR HYPER HYPERPRE.F77
QUICK HYPERSONICS FROM BOEING

SOURCE RUN LIBRARY PROCEDURE KEY NAME

DIGVEH.F77 DIGVEH.SEG PL0T10 DG GEOMETRY AWW
HABFRMT.F77 HABFRMT.SEG DG GEOMETRY AWW
IMAGE.F77 IMAGE.SEG PL0T10 IMAGE HAB AWW
WAB.F77 WAB.SEG WAB HAB AWW
WTBAL.F77 WTBAL.SEG WAB WEIGHTS AWW
HYPERPRE.F77 HYPERPRE.SEG HYPER PREPROP AWW
HYPER.F77 HYPER.SEG PL0T10 HYPER AERO AWW

Fig 9 - Program catalog

www.manaraa.com

PROCEDURES

P_NAME P# COMMAND LINE DESCRIPTION

DG 1 SEG D1GVEH.SEG EXECUTE DIGITIZING PROGRAM
DB 2 SEG REVIEWER.SEG T__DIG_OUT REVIEW DIGITIZED OUTPUT
DB 2 SEG HABFRMT.SEG FORMAT HAB GEOMETRY AND GEOMETRIC PARAMETERS
IMAGE 1 SEG IMAGE.SEG DISPLAY HAB GEOMETRY
WAB 1 SEG REVIEWER.SEG T__UNIT_WTS REVIEW UNIT WEIGHTS
WAB 2 SEG WAB.SEG COMPUTE GEOMETRIC CHARACTERISTICS
WAB 3 SEG WTBAL.SEG COMPUTE UNIT WEIGHT
WAB SEG REVIEWER.SEG T WTS PROP REVIEW WEIGHTS DATABASE
HYPER 1 SEG REVIEWER.SEG T ;g_W_H!N REVIEW GEOMETRY, WEIGHTS,HYPER AND HYPER INPUT
HYPER 2 SEG HYPERPRE;SEG CREATE INPUT FILE HYPIN FOR HYPER
HYPER 3 SEG HYPER.SEG COMPUTE HYPERSONIC TRIM

Fig 10 - Procedure f i le s

www.manaraa.com

PROC CATALOG

P_NAME DESCRIPTION DATE NAME

DG
IMAGE
WAB
HYPER

DIGITIZE GEOMETRY
DISPLAY HAB GEOMETRY
COMPUTE WEIGHTS AREAS AND BALANCE
COMPUTE HYPERSONIC AERODYNAMICS’:

01/07/0*1
01/07/8*1
01/07/8*1
01/07/8*1

AWW
AWW
AWW
AWW

Fig 11 - Procedure catalog

DB CATALOG

DB_NAME ORIGIN M_DATE DESCRIPTION NAME C_DATE

EXAMPLE
MARTIN
MARTIN2

SYSTEM
EXAMPLE
MARTIN

01/05/8*1
01/08/8*1
01/10/8*1

BENCHMARK INPUT DATA
MARTIN TASK II SSTO
MMC1 WITH NEW WING

SYSTEM
AWW
AWW

01/05/8*1
01/06/8*1
01/08/8*1

Fig 12 - Configuration database catalog

www.manaraa.com

ACTIVITY LOG

USER_ID SESSION COMMENTS DB_NAME DATE TIME

AWW START MARTIN STUDY MARTIN 01/06/84 10:30
AWW INCREASE BODY FOR P/L MARTIN 01/06/84 16:20
AWW COMPLETED P/L STUDY MARTIN 01/08/84 11:10
AWW NEW STUDY-RESIZE WING MARTIN2 01/08/84 16:08
AWW CCV TECHNOLOGY WEIGHTS MARTIN2 01/10/84 11:14

Fig 13 - A ctivity log

www.manaraa.com

• LOCAL DATABASES

|USER 1

luSER 2^

IUSER 3 t

JuSER 2 ENVIRONMENT!

4USER 3 ENVIRONMENT!

• GLOBAL DATABASE

USER
CATALOG

PROGRAM
LIBRARY

• PROGRAM
CATALOG

• PROGRAMS

TEMPLATE
LIBRARY

• TEMPLATE
CATALOG

• TEMPLATES

PROCEDURE
LIBRARY

•PROCEDURE
CATALOG

•PROCEDURES

USER 1 ENVIRONMENT
•CONFIGURATION LIBRARY
•TEMPLATE LIBRARY
f PROCEDURE LIBRARY
• LOG

CONFIGURATION
LIBRARY

• CONFIGURATION
CATALOG

•CONFIGURATION
DATABASES

DATA

• RELATION
CATALOG

• RELATION
• DEFINITION
• DESCRIPTION

DICTIONARY

(USER INTERFACE)

EXECUTIVE

Fig 14 - Multi-user CAE architecture

www.manaraa.com

RELATION GEO CHAR

p# PNAME PVALUE

1 STOTAL 1088.082
2 SWLE 49.5
3 SWTE 20.0
4 TAPER 0.21
5 WALOC 66.11
6 XLBODY 61 .9 ‘
7 XLNOSE 42;7
8 CAMBER 0.068
9 HBODY 12.12
10 WBODY 18.97
11 POWER 0.43
12 BFL 1 ;0

Fig 15 - Geometry parameter re la tio n

www.manaraa.com

RELATION XYZ'S

X Y z STATUS NAME

0.0000 0.0000 0.0000 3 NOSE
0:0000 0:0000 o.-oooo 0 NOSE
0.0000 0:0000 0:0000 0 NOSE
0:0000 0:0000 o:oooo 0 NOSE
0:5000 0:0000 - 0:5000 1 NOSE
0:5000 0:5000 -0 .5000 0 NOSE
0:5000 0:5000 0:5000 0 NOSE
0;5000 0.0000 0:5000 0 NOSE
1 :oooo

•
0:0000

•
-0:7500

•
3
•

BODY
•

•
•

•
•

•
•

•
•

•
•

a) Geometry stored in re la tio n a l form

RELATION XYZ'S

FILE NAME

GEOM XYZ

b) Geometry stored in a f i l e referenced by a re la tio n

Fig 16 - Two ways of storing bulk data files in ARIS

www.manaraa.com

RELATION COMMAND ROUTINES

TIME AND DATE

SYSTEM SORTING ROUTINES

DISK ACCESS

EXECUTIVE

QUERY PARSER

COMMAND STRUCTURER

• INTERACTIVE

ROUTINES

• RELATIONAL

LIBRARY

• HOST OPERATING

SYSTEM UTILITIES

Fig 17 - ARIS software layers

www.manaraa.com

TEMPLATES

T_NAME SEQ0 RELATIONS P/R N_I ITEMS N_VAL VALUES

T DIGOUT 1 DIG OUT PARA 0
T_HYPGEOM 1 XYZ~S RECORD 0 0

GEO CHAR PARA Cf
T HABFILE 1 XYZ'S RECORD 0 0
T UNIT WTS 1 UNIT WTS PARA 0
T GEO PROP 1 GEO PROP PARA 0
T_UNTS_GPRP 1 UNIT WTS PARA 0

GEO PROP PARA 0
T WT PROP 1 WT PROP RECORD 0 0
T_G_W_HIN 1 GEO CHAR PARA 0

2 WT PROP RECORD 1 CG 1 TOTAL
3 HYPER IN PARA 0 •

T EXAMPLE 1 WT PROP RECORD 0 0

Fig 18 - Template description

TPLATE CATALOG

T_NAME DESCRIPTION I/O/RG PROGRAM NAME DATE

T_DIG_OUT DIGITIZE OUTPUT OUTPUT GEO DIG AWW 01/06/84
INPUT HABRFMT AWW 01/06/84

T HYPGEOM HAB GEOM FILE AND PARAMETERS OUTPUT HABFRMT AWW 01/06/84
T"h'ABFILE HAB GEOMETRY FILE INPUT IMAGE AWW 01/06/84

INPUT GEO_PRP AWW 01/06/84
T UNIT WTS UNITS WEIGHTS INPUT REPORT AWW 01/06/84
t""geo PROP GEOMETRIC PROPERTIES OUTPUT GEO PRP AWW 01/06/84
t“ UWTS GPRP UNITS WEIGHTS AND GEOM PROP INPUT WTS BAL AWW 01/06/84
f WT PROP WEIGHT PROPERTIES OUTPUT WTS BAL AWW 01/06/84
f "g w hin GEOM, CG, AND INPUT INPUT HYPER AWW 01/06/84
t' "example RECORD EXAMPLE REPORT AWW 01/06/84

Fig 19 - Template catalog

www.manaraa.com

RELATION

REL_NAME DESCRIPTION P/A NJVA NAME NC C_NAME NU U_NAME DATE

DIGJDUT DIGITIZING OUTPUT PARA 28 AWW 1 GEO_DIG 2 IMAGE 01/06/84
* GEOM PRP *

XYZ'S HAB GEOMETRY FILE ATTR 1 AWW 1 ' HABFRMT 2 IMAGE 01/06/84
• GEO PRP *

GEO CHAR GEOMETRIC CHARACTERISTICS PARA 12 AWW 1 GEO DIG 1 HYPER 01/06/84
GEO PROP GEOMETRIC PROPERTIES ATTR 8 AWW 1 GEO PRP 1 WTS BAL 01/06/84
UNIT WTS COMPONENT UNIT WEIGHTS PARA 2 AWW 1 USER 1 WTS BAL 01/06/84
WT PROP WEIGHTS PROPERTIES ATTR 3 AWW 1 WTS BAL 1 HYPER 01/06/84
HYPER IN HYPER USER INPUT PARA 2 AWW 1 USER 1 HYPER 01/06/84

Fig 20 - Relation catalog

www.manaraa.com

PAR/ATT

REL_NAME P/A_NAME DESCRIPTION UNITS TYPE NCHAR DIM_1 DIM_2 DIM_3

DIG OUT NCROSS NUMBER OF X-STATIONS NA INT 0 1 1 1
DIG OUT XCROSS CROSS SECTION STATIONS FT REAL 0 20 1 1
DIG OUT NCRPTS NUMBER OF CROSS SECTION POINTS NA INT 0 1 1 1
DIG OUT YCROSS Y CROSS SECTION POINTS FT REAL 0 20 20 1
DIG OUT ZCROSS Z-CROSS SECTION POINTS FT REAL 0 20 20 1
DIG OUT NPLAN NUMBER OF PLANFORM POINTS NA INT 0 1 1 1
DIG OUT XPLAN X-PLANFORM POINTS FT REAL 0 20 1 1
DIG OUT PLAN Y-PLANFORM POINT FT REAL 0 20 1 1
DIG OUT NSIDET NUMBER OF SIDE TOP POINTS NA INT 0 1 1 1
DIG OUT XSIDET X-SIDE TOP POINTS FT REAL 0 20 1 1
DIG OUT ZSIDET Z-SIDE TOP POINTS FT REAL 0 20 1 1
DIG OUT NSIDEB NUMBER OF SIDE BOTTOM POINTS NA INT 0 1 1 1
DIG OUT XSIDEB X-SIDE BOTTOM POINTS FT REAL 0 20 1 1
DIG OUT ZSIDEB Z-SIDE BOTTOM POINTS FT REAL 0 20 1 1
DIG OUT NWING NUMBER OF WING PLANFORM POINTS NA INT 0 1 1 1
DIG OUT XWING X-WING PLANFORM POINTS FT REAL 0 12 1 1
DIG OUT YWING Y-WING PLANFORM POINTS FT REAL 0 12 1 1
DIG OUT ZWING Z-WING PLANFORM POINTS FT REAL 0 12 1 1
DIG OUT NWAIRF NUMBER OF WING AIRFOIL POINTS NA INT 0 1 1 1
DIG OUT XWAIR X-AIRFOIL POINT NA REAL 0 20 1 1
DIG OUT ZWAIR Z-AIRFOIL POINT NA REAL 0 20 1 1
DIG OUT NTAIL NUMBER OF TAIL PLANFORM POINTS NA INT 0 1 1 1
DIG OUT XTAIL X-TAIL POINTS FT REAL 0 12 1 1
DIG OUT YTAIL Y-TAIL POINTS FT REAL 0 12 1 1
DIG OUT ZTAIL Z-TAIL POINTS FT REAL 0 12 1 1
DIG OUT NTAIRF NUMBER OF TAIL AIRFOIL POINTS NA INT 0 1 1 1
DIG OUT XTAIRF X-TAIL AIRFOIL POINTS NA REAL 0 20 1 1
DIG OUT ZTAIRF Z-TAIL AIRFOIL POINTS NA REAL 0 20 1 1
XYZ'S FILENAME HAB GEOMETRY FILE NAME NA FILE 80 1 1 1

Fig 21 - Data description

www.manaraa.com

PAR/ATT (con't)

REL_NAME P/A_NAME DESCRIPTION UNITS TYPE NCHAR DIM_1 DIM_2 DIM_3

GEO CHAR STOTAL WING REFERENCE AREA FT2 REAL 0 1 1 1
geo” CHAR SWLE WING LEADING SWEEP DG REAL 0 1 1
GEO CHAR SWTE WING TRAILING SWEEP DG REAL 0 t 1 1
GEO CHAR TAPER WING TAPER RATIO(CTIP/CROOT-REF) NA REAL 0 1 1 1
GEO CHAR WALOC THEORETICAL WING APEX LOCATION FT REAL 0 1 1 1
GEO CHAR XLBODY TOTAL BODY LENGTH FT REAL 0 1 1 1
GEO CHAR XLNOSE BODY NOSE LENGTH FT REAL 0 1 1 1
GEO CHAR CAMBER BODY CAMBER FT REAL 0 1 1 1
GEO"CHAR HBODY BODY HEIGHT FT REAL 0 1 1 1
GEO CHAR WBODY BODY WIDTH FT REAL 0 1 1 1
GEO CHAR POWER POWER LAW BODY FACTOR NA REAL 0 1 1 1
geo” CHAR BFL BODY FLAP LENGTH FT REAL 0 1 1 1
GEO PROP C NAME COMPONENT NAME NA CHAR 8 1 1 1
GEO PROP S AREA SURFACE AREA FT2 REAL 0 1 1 1
GEO PROP F AREA MAXIMUM FRONTAL AREA FT2 REAL 0 1 1 1
GEO PROP S AREA SIDE AREA FT2 REAL 0 1 1 1
GEO PROP P AREA PLANFORM AREA FT2 REAL 0 1 1 1
GEO PROP VOLUME INTERNAL VOLUME FT 3 REAL 0 1 1 1
GEO PROP CG XYZ CENTER-OF-AREA LOCATION FT REAL 0 1 1
GEO PROP I AREA MOMENTS/PRODUCTS OF INERTIA FT2 REAL 0 1 1
UNIT WTS C NAME COMPONENT NAME NA CHAR 8 1 1 1
UNIT WTS C U WTS COMPONENT UNIT WEIGHTS LB /FT2 REAL 0 1 1 1
WT PROP C NAME COMPONENT NAME NA CHAR 8 1 1 1
WT PROP WEIGHT COMPONENT WEIGHT LB REAL 0 1 1 1
WT PROP CG XYZ CENTER-OF-GRAVITY LOCATION FT REAL 0 1 1
HYPER IN PSTAG NEWTONIAN COEFFICIENT NA REAL 0 1 1 1
HYPER IN PRINT PRINT FLAG (=YES FOR PRINTING) NA CHAR 4 1 1 1

Fig 21 (con't)
00o*

www.manaraa.com

* * * * * * * * * * * * * * * * * * *
* *

* AIDES *
* *

‘ R E V I E W E R *
* *

Template - T UNIT WTS

SCREEN 1

L# CJTALUE 0_VALUE DESCRIPTION UNITS

1 8 65 8.87 WNG COMP WT LB/FT2
2 5.42 5.42 BDY COMP WT LB/FT2
3 6.42 6.42 TAIL COMP WT LB/FT2
4 4.55 4.55 BFLP COMP WT LB/FT2

EDIT
>1,P,9.65 (change present value on line 1 to 9.65)
>2,P,6;50 (change present value on lin e 2 to 6;50)
>R (re -p rin t the screen)

SCREEN 1

L# C_VALUE 0_VALUE DESCRIPTION UNITS

1 9 65 8.87 WNG COMP WT LB/FT2
2 6.50 5.42 BDY COMP WT LB/FT2
3 6;42 6.42 TAIL COMP WT LB/FT2
4 4.55 4.55 BFLP COMP WT LB/FT2

EDIT
>E (save changes and end reviewer session)

Fig 22 - Parameter reviewer example

www.manaraa.com

« X

* AIDES *
» x
‘ R E V I E W E R *
x x
xxxxxxxxxxxxxxxxxxx

Template - T EXAMPLE

COLUMN DIMENSION NAME DESCRIPTION UNITS

1 C NAME COMPONENT NAME
2 WEIGHT COMPONENT WEIGHT LB
3 (3) CG XYZ CENTER-OF-GRAVITY FT

SCREEN 1

COL# 1 2 3 * 5

L# | C_NAME WEIGHT CG(1) CG(2) CG(3)

1P BODY 2463*0 62.0 0.0 2.05
10 BODY 2463*0 62.0 0.0 2:05

2P WING 486.0 68.0 0.0 -3.05
20 WING 436:0 68:0 0.0

r -3.05

3P TAIL 127*0 85.0 0.0 4.36
30 TAIL 127:0 85:0 0.0 4:36

4P TOTAL 3076.0 63-9 0.0 1.32
no TOTAL 3026.0 63:8 0.0 1:41

EDIT
>1,P,3,2555 (change present value on lin e 1/column 3 to 2555)
>D,1,2 (display columns 1 and 2)
>R • (re -p rin t the screen)

Fig 23 - Parameter or re la tio n reviewer example

www.manaraa.com

89

SCREEN 1

COL# 1 J _____

L# | CJfAME WEIGHT

1P BODY 2555.0
10 BODY 2463.0

2P WING 486.0
20 WING 436:0

3P TAIL 127.0
30 TAIL 127:0

4P TOTAL 3076.0
40 TOTAL 3026.0

EDIT
>E (save changes and end reviewer session)

Fig 23 (con 't) - Record or re la tio n reviewer example

www.manaraa.com

oo

o
o

oo
oo

o
o
o
o

90
SUBROUTINE INPUT

ROUTINE TO INPUT DATA INTO THE HYPERSONIC PROGRAM

COMMON / C INPUT / STOTAL, SWLE, SWTE, TAPER, WALOC, XLBODY,
+ ~ XLNOSE, CAMBER, HBODY, WBODY, POWER,BFL,
+ PSTAG, PFLAG, XCG

/•AIDE
TEMPLATE T G W HIN /*AIDE

/•AIDE
RELATION GEO CHAR /*AIDE

REAL STOTAL, SWLE, SWTE, TAPER, WALOC, XLBODY,XLNOSE /*AIDE
+ CAMBER, HBODY, WBODY, POWER,BFL /*AIDE

CALL DBIN1(STOTAL, SWLE, SWTE,. TAPER, WALOC, XLBODY, /*AIDE
• XLBODY, CAMBER, HBODY, WBODY, POWER,BFL) /*AIDE

CALL DBIN2(CG,NRECORDS) /*AIDE
XCG - CG(1)

REAL PSTAG
CHARACTER*4 PFLAG

DIMENSION CG(3)
RELATION WT PROP

RELATION HYPER IN

/•AIDE
/•AIDE
/•AIDE
/•AIDE
/•AIDE
/•AIDE
/•AIDE

CALL DBIN3CPSTAG,PFLAG)
RETURN
END

/•AIDE

Fig 24 - Precompiled code incorporated with an- input subroutine

www.manaraa.com

• INTEGRATED PROGRAM

INPUT SUBROUTINEDATABASE INPUT
PRE-COMPILER

APPLICATION PROGRAM

DATABASE OUTPUT
PRE-COMPILER

OUTPUT SUBROUTINE

CONFIGURATION
DATABASE

DATA DICTIONARY
AND TEMPLATE

INTERFACED PROGRAM

PRE-PROCESSORDATABASE INPUT
PRE-COMPILER

INPUT FILE

APPLICATION PROGRAM

RESULTS FILE

DATABASE OUTPUT
PRE-COMPILER

POST-PROCESSOR

Fig 25 - Program in tegration and in terfacing with the form atter

www.manaraa.com

META DATABASE
PROGRAM CATALOG
PROCEDURE LIBRARY
CONFIGURATION CATALOG
DATA DICTIONARY
TEMPLATE LIBRARY
USER CATALOG

CONFIGURATION DATABASE 1

CONFIGURATION DATABASE 2

CONFIGURATION DATABASE 3

PROGRAM FILES
PROGRAM1.SOURCE
PROGRAM1;SEG
PROGRAM1.PROC
PR0GRAM2;SOURCE
PR0GRAM2:SEG
PROGRAM2;PROC

LIBRARY FILES
PL0T10.SOURCE
DI3000 .'SOURCE

26 - Global database directory

www.manaraa.com

DATA DICTIONARY
PROGRAM LIBRARY

PROCEDURE
TEMPLATE LIBRARY,

ARISFORMATTER

INPUT AND OUTPUT
^ CODE

SYSTEM
ADMINISTRATOR

INPUT SUBROUTINE

CONFIGURATION
^DATABASE .

APPLICATION
PROGRAM

OUTPUT SUBROUTINE

REVIEWER

Fig 27 - Installing a new program into the CAE system

VOu>

www.manaraa.com

94

• PROCEDURES •PROGRAMS •TEMPLATES

T DIGOUT

T DIGOUTDB

T DIGOUT

T HYPGEOI

[iMAGE f T HABFILE.IMAGE

T HABFILE
| geo_prop

CONFIGURATION
_ DATABASE -

T WT PROP,

T UNIT WTSREVIEWERWAB

T UWTS GPRR
WTS BAL

T WT PROP,

REVIEWER\

I hyperpreI

gHYPIlp

I hyperI

T G W HIN

T G W HINHYPER

Fig 28 - Program and data flow

www.manaraa.com

95

39.6

61.9 m

29 - Engineering drawing to be d ig itized

www.manaraa.com

96

INPUT VEHICLE VIEW
1 - ORTHOGRAPHIC VIEW
2 - TOP VIEW
3 -SIDE VIEW
4 - FRONT VIEW
5 - ZOOM
6 -FINISHED

Fig 30 - Vehicle panel geometry

Pitching
Moment

0.08

- . 0 8

Angle of a ttack , degrees

Fig 31 - Vehicle trim aerodynamics

www.manaraa.com

97

PROGRAM

RELATION

GEO DIG

DIG OUT

HABFRMT

GEO PRP

WTS BAL

WT PROPHYPIN IN

HYPERPRE

Fig 3 2 - Program and re la tio n data flow (data dependency graph)

www.manaraa.com

APPENDIX

www.manaraa.com

A RELATIONAL INFORMATION SYSTEM

Relational Data Model

Currently, there are three basic data models used to structure data

in database management systems (Refs. A1 and A2). The most recent data

model to be Introduced, the relational model, is the only one based on

mathematical theory.^ It is becoming a widely accepted data model

since data can be easily structured and manipulated.. Also it is easier

to understand than the other models, and data is retrieved by simple

queries. Based on the evaluation of current data management systems, it

was decided to develop a general-purpose relational system which is

called A Relational Information System (ARIS) to support the computer-

aided engineering framework.

The relational model is based on set theory. Instead of explaining

the relational model in strict mathematical terms, a simplistic approach

is taken to describe the current relational implementation.

As shown in Figure A1, the relation, TEST, can be represented as a

table. The relation consists of six attributes (or columns). The degree

of the relation is equal to the number of attributes, e.g., the degree of

TEST is six. The number of tuples (or rows in the table) is called the

cardinality of the relation, e.g., the cardinality of TEST is 5.

To review and manipulate relations, a query language was developed

(based on relational algebra)^3 for interactive processing along with

corresponding library of subroutines for database processing from an

application program.

Interactive ARIS

The interactive mode of ARIS receives commands that are entered

directly from a user terminal to create and manipulate relational data.

www.manaraa.com

100

General Comments

The system prompts the user with a right arrow (>) whenever Input

is required to be entered. Each command line consists of one or more

words typed in by the user. The command can be continued to the next

line by using the (&) character at the end of a line. The following

are examples of the same command:

> SELECT * FROM TEST WHERE TEST# EQ 100

is the same as

> SELECT * ROM TEST &

> WHERE TEST# EQ 100

To separate words in a command either a space or a comma or both can be

used. The following commands

> SELECT TEST#, RUN# FROM TEST

> SELECT TEST# RUN# FROM TEST

are identical. Multiple spaces are ignored. A character string with

blanks must be enclosed by single quotes (') as shown in the following

command:

> SELECT FROM TEST WHERE NAME EQ 'A W WILHITE'

If no blanks are in the character string, single quotes are not needed.

A maximum of 50 tokens (words, values, or subscripts) is allowed for

each interactive command with a maximum of 132 characters per line.

Many of the interactive commands have options and/or selections

that a user can make. In defining the syntax of the commands, an option

within a command is given as

"A"

Q

-C.

www.manaraa.com

101

This syntax represents an option where either A, B, C or none of these

options can be used. The ellipsis syntax

• • •

means that the preceding option can be repeated. The syntax

A

B

C

represents a selection where either A, B, or C must be used.

Although not obvious now, the syntax will be clarified with the

syntax of the interactive commands and the corresponding examples (see

the SELECT command).

Initiation and Termination

The following sections of this paper will describe the construction

of a database, the construction of relations in a database, the input of

tuples into relations, and the various ways relations can be manipulated.

When ARIS is first executed, a banner will appear with the date and time.

The user must first enter the database name as shown in Figure A2 before

any database activities can be performed. The database name consists of

one to six characters and must be unique. If no database exists with

that name, a virgin database is created.

For the manipulation of two simultaneous databases (e .g ., to tran sfe r

a re la tion from one database to another or to save the temporary database)

both database names can be entered a fte r the input request by:

database-name-1, database-name-2

These databases are considered to be the permanent and temporary

databases respectively. If the temporary database is to be saved, its

name must be entered at the initiation of a session.

www.manaraa.com

102

QUIT: To terminate the program and save the current database(s),

the command

QUIT

is used. A statement declaring the names of the permanent database and

the temporary database, if a temporary database name was entered at the

beginning of the session, will appear on the screen.

HELP: The command

HELP

lists the syntax and abbreviations that can be used for all the ARIS

Interactive commands. An illustration of each of the above commands is

given in Figure A2.

Relation Definition

A database consists of one or more relations. When the program is

initiated, the first response requested from the user is the database

name (Fig. A3). The database name, DBNAME, is entered. The data

description required for the relation TEST from Figure A1 is shown in

Figure A3.

CREATE. The data description of a new relation can be added to the

database at any time with the CREATE command. When CREATE is entered,

questions are asked concerning the description of the relation. First,

the relation name (TEST), is entered. Relation names must be unique and

restricted to 8 characters or less. The number of attributes (6) is then

entered for the example in Figure A3. A maximum of 50 attributes is

allowed. For each attribute in the relation, the attribute name,

dimension, type, inverted attribute/duplicates allowed and primary key

selection must be entered. The attribute name must be unique within a

www.manaraa.com

103

relation and is restricted to eight or less alphanumeric characters.

Remember, once a relation has been created, the attribute definitions

cannot be changed.

The dimension (an extension to the relational model) is the number

of elements that can be placed in that attribute. For a dimension equal

to 1, only one value can be placed in the attribute. An attribute

dimensioned n, where n is greater than 1, has n values associated with

it. The dimension can be specified as 0. For this case, both the

dimension and the type must be added to the tuple when the data is being

entered into the database (see the later sections on the Interactive Data

Manipulation Language and ARIS FORTRAN Library). There are four data

types allowed— character, real, Integer, and file— and they are specified

by the key words CHAR, REAL, INT, or FILE, respectively. For character

data type, the alphanumeric character string length must be entered.

This defines the string length for each attribute element. For file data

type, the filename character string length must be entered. This data

type option, upon input, will open a file (by the name declared in each

data tuple), allow any type input, and then close the file. Real and

Integer types take one computer word per element and character and file

types take the next largest integer of the defined alphanumeric character

string length divided by A- computer words per element. A string declared

as 5 characters would require 2 words of storage. There is a maximum

limit of 1000 words per tuple in the interactive mode of ARIS. In rela

tion TEST, TEST# is defined as character data type with length 8;

therefore, number of words per element is 2.

Each attribute can be inverted by entering Y for YES to the inver

sion question (Fig. A3). Inversion is a specification to be made if fast

access is needed to a tuple based on the value of the inverted attribute.

www.manaraa.com

Inverted attributes are used primarily for relations with a large number

of tuples (cardinality greater than 10,000). Search time is reduced to

a logarithmic search by the use of B*-trees (Ref. A*0. For the case of

a relation with 10,000 tuples, the difference in retrieval performance

between Inverted and non-inverted attributes is approximately 7:1. The

increased access speed must be traded with increased disk storage

(approximately double the storage requirement for 1 inversion, triple

for 2 inversions, etc.) and increased storage time (approximately a

factor of k increase). With inversion, the tuples are automatically

sorted in ascending order on each inverted attribute. When an attribute

is inverted (by entering Y), a specification can be made for duplicates

allowed (by entering Y or N for YES or NO). If duplicates are not allowed

(N specification), no tuple can be entered with the value of the inverted

attribute the same as one previously stored. This specification can be

used as a simple data protection scheme, e.g., only allow unique test

numbers in the relation test.

Primary key is an integrity constraint option that can be used to

ensure that each tuple is unique. This specification is similar to dupli

cates allowed but is more encompassing. In the TEST relation, entering Y

(for yes) to the primary key question for attribute TEST# (Fig. A3)

ensures that each tuple will have a unique test number. Another example

would be a salary relation in which first name, middle name, last name,

and salary are attributes. To ensure that a salary is unique to each

employee, the three attributes first name, middle name, and last name

would be the primary key. The extreme case would have all attributes

participate as the primary key but the tuple input performance is de

graded with each primary key attribute because each primary key attribute

www.manaraa.com

105

in all tuples must be checked to ensure uniqueness. For best perfor

mance no attribute has to be declared as primary key. Caution must be

exercised since attributes cannot be changed directly to primary key

after the relation is created.

The other attributes are entered in Figure A3: model number

(MODEL#), wind tunnel name used for the test (TUNNEL), the cognizant

engineer (ENGINEER), a description of the test (COMMENTS), and the date

(DATE). After a relation is entered, the relation description is print

ed along with the nutrtber of words required to store each attribute.

Figures A^-A6 illustrate the CREATE command for three other

relations. Relation MODEL describes the wind tunnel models tested with

the model number (M#), type of model (TYPE), description of the model

(COMMENTS), and the model scale (SCALE) which is the model size divided

by the real size of the aircraft. The relation TEST-RUN describes the

tests. The attributes are test number (TEST#), run number (RUN#),

description of the run (COMMENTS), the configuration buildup (CONFIG),

the control settings of the aileron (C1) and rudder (C2) in degrees,

the run attitude change (POLAR) and the speed parameter of the test

(MACH). Finally, illustrating dimensioned attributes, the relation

TDATA describes the aerodynamic data measured. The aerodynamic data

(DATA) is presented as a function of test number (TEST#), run number

(RUN#) and point number (POINT#). The aerodynamic data measured are

angle of attack, side-slip angle, lift coefficient, and drag

coefficient— DATA(1) through DATA(^) respectively.

CHANGE. The CHANGE command is used to change the relation

description. To change an attribute name in a relation, the command

CHANGE attribute name-1 TO attribute-name-2 IN relation-name

www.manaraa.com

106

Is used. An example is given in Figure A7. To change a relation name

CHANGE relation-name-1 TO relation-name-2

is used. To change inverted attribute specifications, use the command

(INV
CHANGE attribute-name IN relation-name TO \

(NONINV

where INV specifies attribute inversion (Fig. A7) and NONINV eliminates

the inversion. Only duplicates allowed inversion is permitted since

duplicate attribute values may already exist in the relation. The time

required to execute this command will depend on the cardinality of the

relation.

RELATION. All the relation names in the database can be listed with

the RELATION command (Fig. A7). By appending a relation name to the entry

RELATION as shown in Figure A7, the description and cardinality of a rela

tion are displayed. The relation command syntax is

RELATION [relation-name]

End of Example. Once relations have been defined, data can be stored

in these relations either interactively, by file, or by a FORTRAN applica

tion program. Although no tuple data has been stored in Figures A2-A7,

the session can be ended and the database saved (relation descriptions)

by using the QUIT command.

Interactive Data Manipulation Language

The interactive data manipulation language is based on the relational

algebra constructs outlined in references A1 and A3. Additional commands

have been added in ARIS for user convenience. To begin the interactive

session (Fig. A8) the database is opened by entering the database name,

www.manaraa.com

107

DBNAME.

INPUT. To enter tuples Interactively, the command

INPUT[R] relation-name

is used. Each attribute is entered individually as shown in Figure A8.

When the key word, $END, is entered for the first attribute value of a

tuple instead of entering a value, control is returned to the interac

tive command level.

For variable length attributes (dimension specified as 0), both the

dimension and type are entered before the attribute values.

The INPUTR option replaces old data with that just entered if a

primary key conflict occurs. If a primary key conflict occurs with the

INPUT option, an error message would be printed and the old data would

not be changed.

DLOAD. To enter tuples from an external file the command

DLOAD relation-name file-name

is used. The external file data is structured as stacked attribute

values similar to the INPUT command. An example of INPUT and the exter

nal file, AWTEST, is shown in figure A9. Tuples are entered Into the

other relations in figures A9-A11.

The command RELATION TEST in figure A9 outputs the relation

description and the number of tuples entered. Five tuples have been

entered— one from interactive input and four from the external file

AWTEST.

PRINT. The command

PRINT relation-name

lists all tuples In the relation as shown in Figures A9-A11.

SELECT. The most comprehensive command for data retrieval is SELECT

www.manaraa.com

108

because It can retrieve any or all attributes for a relation based on

any combination of logical and boolean operations. The results can be

sorted and returned to the user or placed in a temporary relation for

further manipulation. The SELECT format is

SELECT < > FROM relation-name
I ’ }(att-1 [,att-2]....)

■ EQ\ - -

NE (TOL)
WHERE attw-1 LT value-1 <PT0L> tol-1

LE (mtol)
GT -

- G£

-(UP j
(down)

GIVING

r - EQ, _

NE (TOL)
/AND\ attw-2 LT value-2 <PT0L> tol-2
(or / LE (mtol)

GT
W GE

atts-1

TTY

\atts-2̂ j'I If tJ [(down)

\ [r e n a m e jattr-1 j j ^ j , attr-2.. . j
(new-relation-name) L

where * represents all the attributes in the relation and att-n are

selected attributes that are retrieved. The default command

SELECT * FROM relation-name

is identical to the

PRINT relation

command as shown in figure A12. The command

SELECT TEST# FROM TEST

retijieves all occurrences of just test number and points the results to

the terminal (TTY).

In the WHERE clause, attw-n are the attributes that are logically

compared with values, value-n, to specify the conditions for tuple

www.manaraa.com

109

retrieval. A tolerance, tol-n, on numeric data (TOL for ± tolerance,

PTOL for positive tolerance, and MTOL for a negative tolerance) can be

specified on any logical comparison. Figure A13a is an example of the

WHERE clause that retrieves all tests conducted by Spencer or using the

SH10 model. Figure A13b is a tolerance example.

The UP (DOWN) clause with the attribute atts-n is used to sort the

tuples in ascending (descending) order. If more than one sort clause is

used, the first sort is the major sort and the following sorts are minor

sorts (fig. A13c).

If the new relation name is unique in the GIVING clause, the relation

definition and retrieved tuples are placed in the temporary database.

All data manipulation commands can be used with all relations, either

permanent or temporary. If the same relation name exists in both the

permanent and temporary databases, only the relation in the permanent

database can be manipulated. But with the CHANGE command, relation

names can be changed to be unique, thus eliminating the problem.

When a temporary relation is created, the attribute names can be

changed with the RENAfC clause. A one-to-one correspondence must exist

with the retrieval attributes (att-n) and the renamed attributes (attr-n).

The symbol # denotes that the temporary attribute name will not be

changed from the permanent name. The RENAME clause must be used whenever

an element of a dimensioned array is retrieved and stored in a temporary

relation. The RENAME clause is illustrated in figure A13d where the point

number and angle of attack for test LA70 and run 1 are placed in a

temporary relation called LA701.

DELETE. To permanently delete a relation the command

DELETE RELATION relation-name

www.manaraa.com

110

is used. To delete tuples from a relation the command

DELETE relation-name [WHERE ...]

is used. The WHERE clause (see SELECT command) specifies the tuples to

be deleted. Figure A14a illustrates the use of the DELETE command.

ASSIGN. Once tuples have been entered into a relation, attribute

values can be changed with the following command:

ASSIGN value TO attribute-name IN relation-name

[WHERE ...]

Without the WHERE clause, the value of attribute-name for every tuple

will be equal to the value entered with this command. For variable

length tuples where data type can change from one tuple to another,

numeric values will be converted correctly. String values will not be
N

stored in numeric (REAL or INT) data type attributes. An example

of the ASSIGN command is given in Figure A1*fb.

JOIN. The JOIN operation combines two relations into a third relation

that has the combined attributes of each of the two Joined relations.

For each tuple, the value of one attribute in the first relation is com

pared with the value of an attribute in the second according to the

logical operator declared. If the comparison is true, then the tuples

are combined. The JOIN syntax Is

JOIN relation-name-1 AND relation-name-2 OVER att-1
f TTY)

[GIVING < >]
(relation-name-3*

/EQ,
NE)
\LTI att-2
(LE)
lGT\[GEj
'CS'

where att-1 and att-2 must exist in the respective relations and have

the same data type definition. If the att-2 logical option is not used,

then the JOIN is an implied EQUAL JOIN where att-1 must exist in both

relations and EQ is the implied logical operator. An example of the

www.manaraa.com

I l l

30IN command is shown in figure A15 which illustrates a group of queries

to determine the engineers that have tested Shuttle models.

UNION. To add the tuples of one relation to another, the command

UNI0N[R] relation-name-1 AND relatlon-name-2 [GIVING■fE.ej_ation—name—^

is used. The relation-name-3 literal can be a new relation or one that

already exists. The command

UNION A AND B GIVING A

simply adds the tuples of relation B to relation A. For a successful

operation, the relations must be union compatible where the attribute

names and attribute definitions for each relation must be identical.

The UNION command can also be used for the union set operation where the

tuples belonging to either relation A or relation B can be combined to

form a third relation C. Using the results for the relation TEMP2 in

Figure A15, the queries in Figure A16a determine the engineers that have

tested Shuttle models (this is relation TEMP2) in either the LTPT or the

Unitary wind tunnels.

Another use of the UNION command is to transfer relation tuple data

from one database to another. A temporary relation can be created with

the SELECT command and saved. A second database and this temporary

database can be used in another session. By using a UNION command, the

temporary tuple data can be added now to the second database.

The UNIOM option will replace old data with the new entry if a

primary key conflict is encountered, whereas the UNION option will return

an error message and keep the old data.

INTERSECT. The intersection of two (union-compatible) relations has

the syntax

www.manaraa.com

112

INTERSECT relation-name-1 WITH relation-name-2

GIVING {relation-name-3}

which gives the set of all tuples belonging to both relations. The

example presented in Figure A16b is to determine the engineers that have

tested Shuttle models in both the LTPT and the Unitary wind tunnels.

MIN. The command

MIN (att-1 [,att-2]... IN relation-name

prints the minimum value of each attribute listed (see SELECT command)

for the relation (Fig. A17a).

MAX. The command

MAX {att-l}[,att-2]... IN relation-name

prints the maximum value of each attribute listed (Fig. A17b).

Database dump and load. With the permanent and temporary database

concepts, relation definition and tuple data can easily be copied from

one database to another. In order to transfer database data across

different computers, the data must be converted to ASCII (card image)

form. Six commands are provided for this function. The commands

DUMP [relation-name] file-name

SDUMP [relation-name] file-name

DDUMP relation-name file-name

are used to dump both relation and tuple data, relation definition data

only, and tuple data only, respectively. If no relation-name is specifi

ed in the DUMP or SDUfP commands, then all relations are dumped. The

file-name specifies where the dump will be written.

www.manaraa.com

113

T hree in v e rs e commands

LOAD file-name

SLOAD file-name

DLOAD relation-name file-name

read the file that was written with the dump commands.

PTCOPY. To copy the entire permanent database to the temporary

database level (destroying the current temporary database), the command

PTCOPY

is used. If a duplicate relation name occurs, the command will abort

with an error message.

TPCOPY. To copy the entire temporary database to the permanent

database level (destroying the current permanent database), the command

TPCOPY

is used. Duplicate relation names are illegal, causing the command to

abort and return an error message.

REPLACE. To replace data in a relation with data from another

relation, the command
.T .T

REPLACE relation-name-1 [] WITH relation-name-2 []
.P .P

is used. If a database has been loaded into the system at the permanent

and temporary levels and the same relation name appears at both levels,

then the extenders .P and .T refer to the permanent and temporary

relations, respectively.

The REPLACE command deletes the data in relation 1 and inserts the

data fom relation 2 into relation 1.

COPY. To copy an entire relation from one database level to another,

the command

www.manaraa.com

114

COPY relation-name-1 [] WITH relation-name-2 C *p 3
4

is used. If reldtion-name-2 does not already exist, the copy command

will create relatlon-name-2 and insert the data from relation-name-1

into it. Otherwise, the COPY command acts as a REPLACE command.

RECLAIM. With the present ARIS implementation, no garbage collec

tion techniques have been implemented to automatically reclaim space on

the disk occupied by tuple data or relation definitions that have been

deleted (see Internal Structure). To reclaim this unused space,

the

RECLAIM

command is used to make a new copy of the current database. When the

new database is created with the RECLAIM command, the database perfor

mance should increase since all tuples in a relation will be stored

physically together on the disk.

End of example. The end of this interactive session is shown in

Figure A17c. In the interactive session four temporary relations were

created. Since a temporary database name was not entered at the initia

tion of the session, the temporary relations are destroyed.

All data entered into the permanent relations are saved under the

database name, OBNAME, entered at the initiation of the session in

Figure A8.

ARIS FORTRAN Library

The ARIS system can be used directly by users in an interactive

mode, as previously explained, or it can be used by FORTRAN application

programs. A library of subroutines is provided so that the interactive

www.manaraa.com

115

commands can be duplicated with a call to subroutines within a FORTRAN

program. All ARIS subroutines and commands begin with the letter A to

avoid conflicts with existing programs.

Initiation/Termination and Error Processing

AOPEN. The purpose of this subroutine is to open a database that has

been created and saved with the interactive data manipulation language.

Syntax: CALL AOPEN (PERM, TEMP, ICODE)

Parameters: PERM - permanent database name, eight characters*

TEMP - temporary database name, eight characters*

ICODE - error return (see AERROR), integer

*note: the seventh and eighth characters must always be blanks

AQUIT. The purpose of this subroutine is to update all changed

pointers and to close the database files.

Syntax: CALL AQUIT (PERM, TEMP, ICODE)

Parameters: PERM - permanent database name, eight characters*

TEMP - temporary database name, eight characters*

ICODE - error return (see AERROR), integer

*note: same as above

AERROR. Each subroutine in the ARIS library has a parameter, ICODE,

that returns with a value of 0 if the subroutine was successful. If

the subroutine is not successful, the description of the error can be

printed with the AERROR subroutine.

Syntax: CALL AERROR (ICODE)

Parameters: ICODE - error input code, integer

For the program database system, it is the user's responsibility

to make a copy of the database for backup. If an error destroys the

database, it can be replaced with these backup files.

www.manaraa.com

116

Data Manipulation Language

The data manipulation subroutines are used to input, delete, re

trieve, and manipulate relations and tuple data.

APUTRL. The purpose of this subroutine is to identify the relation

that will be used to input tuple data with the APUTTP subroutine.

Syntax: CALL APUTRL (RELNAM, ICODE)

Parameters: RELNAM - relation name, eight or less characters

ICODE - error return, integer

APUTTP. The purpose of this subroutine is to input a tuple into a

relation defined by the APUTRL subroutine.

Syntax: CALL APUTTP (DATA, MDMDAT, ICODE)

Parameters: DATA - the data in the tuple

MDMDAT - the dimension of DATA, integer

ICODE - error return, integer

In the relation MODEL, there are four attributes, MODEL#, TYPE,

COMMENTS, and SCALE. The number of words in this tuple is 11 as shown

in Figure A^. In this case, the dimension of DATA would be at least 11

in the application program and MDMDAT would equal to 11.

For attributes that have been defined as variables, dimension and

type (specified by dimension equal to 0 when the relation was created),

the first two words for that dimension must be the number of elements

and the data type. However, if the data type of a value being entered

is character, then the dimension is not just the number of elements.

The dimension is (1000 * number of characters per element) plus the num

ber of elements. If the breakdown of the dimension information is

needed at a later time, the following subroutine will decipher the

information.

www.manaraa.com

117

Syntax: CALL ALENDM (DATA(i), DATA (i+1), NOCHAR, LENWRD, IDIM)

Parameters: DATA(i) - input, dimension information, integer

DATA(i+1) - input, data type, b characters

NOCHAR - return, number of characters per element,

integer

LENWRD - return, computer word length of each element,

integer

IDIM - return, total number of elements, integer

AREPTP. This subroutine inputs a tuple into a relation defined by

the APUTRL subroutine. However, unlike the APUTTP subroutine, AREPTP

replaces an old data tuple with the new data if the two tuples have

identical primary keys.

Syntax: CALL AREPTP (DATA, MDMDAT, ICODE)

Parameters: (see APUTTP subroutine)

ASELCT. Once data has been entered into the database interactively or

by subroutines, the data can be found by using the ASELCT subroutine which

is identical to the interactive SELECT command. The ASELCT subroutine

finds the correct tuples. These tuples can be placed in a temporary

relation or retrieved from the database into the application program.

Syntax: CALL ASELCT (RELNAM, NATT, ATT, ISATT,

NATTW, ATTW, ISATTW, VALUE, LOPT, BOPT,

TTOL, TVALUE,

NSORT, ATTS, ISATTS, IORDER,

RENAME,

NEWREL, ICNT, ICODE)

Parameters:

RELNAM - relation name, eight or less characters,

dimension (2)

www.manaraa.com

118

NATT - number of attributes retrieved, Integer

= 4H* to retrieve all attributes, (ATT, ISATT

parameters unnecessary In this case)

ATT - attribute names, eight characters

dimension (2,NATT)

ISATT - subscript of ATT, integer, dimension (NATT)

= integer for element retrieval from array

= 4-H* to retrieve all array elements

NATTW - number of attributes in the WHERE clause (see

interactive SELECT command), integer

= 4H* to retrieve all data from defined relation,

(ATTW, ISATTW, VALUE, LOPT, 80PT, TTOL, TVALUE

parameters unnecessary in this case)

ISATTW - subscript of ATTW (see ISATT), integer,

dimension (NATTW)

VALUE - value of attribute, type is that defined for

ATTW, dimension (NDIM), where

NATTW

NDIM = I NUMBER OF WORDS IN ATTW (I)

1=1

LOPT - logical operator (EQ, NE, LT, LE, GT, GE or

CS), four characters, dimension (NATTW)

BOPT - boolean operator (OR or AND), four characters,

dimension (NATTW-1)

TTOL - type of tolerance, dimensional (NATTW) if TTOL

= 4HN0NE

= 4-HTOL for ± tolerance

www.manaraa.com

= 4HPT0L for + tolerance

» ^HMTOL for - tolerance

= for no tolerance specification for

a particular attribute in where clause

= 4HN0NE for no tolerance specification

involved in entire where clause

TVALUE - value of tolerance, dimension (NATTW) if TTOL

=^HN0NE

NSORT - number of sort attributes, integer

= 0 for no sorting

(ATTS, ISATTS, IORDER, parameters unnecessary

in this case)

ATTS - see ATT (Sorting allowed only on names in

ATT), dimension (2, NSORT)

ISATTS - subscript for ATTS (see ISATT), dimension

(NSORT)

IORDER - ordering of relation (UP for ascending or DOWN

for descending), four characters, dimension

(NSORT)

RENAME - new attribute names of selected attribute(s)

if a temporary relation is created, dimension

(2,NATT)

= 0 if no temporary relation is created, integer

= 8H , if all attribute names are not to be

changed, 8 characters

= 8H#, if specific attribute name is not to be

changed, 8 characters or less

www.manaraa.com

120

NEWREL - selection of display, create new relation,

or hold for data retrieval GET subroutines,

= Eight characters, dimension (2)

= 8HTTY - display selected tuples at the

terminal

. = 8H.MYDATA. - hold tuple data for GET sub

routines

= Eight character name - create and store rela

tion with given name in temporary database

ICNT - return of the number of tuples found, integer

ICODE - error return, integer

ASELSH. This subroutine is a shortened version of the ASELCT

subroutine. It retrieves all the attributes, limits the WHERE clause

to a 1 limits the SORT clause to 1 restriction, and holds the data for

GET subroutines.

Syntax: CALL ASELSH (RELNAM,

ATTW, ISATTW, VALUE, LOPT,

ATTS, ISATTS, IORDER,

ICNT, ICODE)

Parameters: (See ASELCT subroutine)

ASELTP. This subroutine is also a shortened version of the ASELCT

subroutine. It disallows any tolerance testing, sorting, or renaming of

attributes.

Syntax: CALL ASELTP (RELNAM, NATT, ATT, ISATT,

NATTW, ATTW, ISATTW,. VALUE, LOPT, BOPT,

NEWREL, ICNT, ICODE)

Parameters: (see ASELCT subroutine)

www.manaraa.com

121

AGETNX. After a relation has been retrieved with the ASELCT, or

ATSELC subroutines with NEWREL equal to .MYDATA., this routine will single

step through the tuple locations satisfying the command.

Syntax: CALL AGETNX (ICODE)

Parameters:

ICODE - return code, integer

= 0 tuple data location found

= 0 no (more) data

AGETTP. Tuple data can be retrieved into the FORTRAN program

using this subroutine preceded by a call to the AGETNX subroutine.

Syntax: CALL AGETTP (DATA, MDMDAT, ICODE)

Parameters:

DATA - tuple data

MDMDAT - dimension of DATA, integer

The dimension, MDMDAT, is the sum of the dimensions (or word length

multiplied by the dimension if attribute type is character) of all the

attributes selected (ATT).

ASAVED. The current processed position of the tuple locations list

can be saved by a call to ASAVED. This allows for other testing without

losing tuple locations already retrieved.

Syntax: CALL ASAVED (DATA, ICODE)

Parameters:
DATA - DATA(1) = dimension of DATA (260)

DATA(2) = file name, four characters

ICODE - Error return, integer

ARSTOR. This subroutine restores the pointer to the list of tuple

locations previously saved by a call to ASAVED. A call to AGETNX will

www.manaraa.com

122
begin the processing of the list again.

Syntax: CALL ARSTOR (DATA, ICODE)

Parameters: (See ASAVED subroutine.)

ADELET. The purpose of this subroutine is to delete a relation or

tuple(s) in a relation based on a WHERE clause.

Syntax: CALL ADELET (RELNAM, NATTW, ATTW, ISATTW, VALUE, LOPT, 80PT,

ICODE)

Parameters: (See ASELCT subroutine)

NATTW = 0 for relation deletion

ADELTP. The purpose of this subroutine is to delete a single tuple

from a relation. It must be preceded by a call to the AGETNX subroutine.

Syntax: CALL ADELTP (ICODE)

Parameters:

ICODE - error return, integer

ASSIGN. The ASSIGN subroutine is used to change an attribute value

in tuples based on the WHERE clause restrictions.

Syntax: CALL ASSIGN (ATT, ISATT, NEWVAL, TYPE, NWRDS, RELNAM, NATTW,

ATTW, ISATTW, VALUE, LOPT, BOPT, ICODE)

Parameters: (see ASELCT for parameter description)

NEWVAL - value being assigned to ATT, must be character

type if ATT is variable dimension and type

TYPE - type of NEWVAL (CHAR, INT, or REAL), h

characters

NWRDS - number of words in NEWVAL, integer

= 1 for integer and real type

= n where n Is the next largest integer of the

length of the character string divided by 4-

www.manaraa.com

123

ATTMOD. This subroutine changes the value of an attribute in a

single tuple. It must be preceded by a call to the AGETNX subroutine.

Syntax: CALL ATTMOD (ATT, ISATT, NEWVAL, TYPE, ICODE)

Parameters: (see ASSIGN subroutine)

A30IN. The purpose of this subroutine is to Join two relations to

form a third relation based on a logical comparison of one attribute in

each relation.

Syntax: CALL A30IN (RELNM1, RELNM2, NEWREL, ATT1, ISATT1, ATT2,

ISATT2, LOPT, ICODE)

Parameters: RELNM1 - first relation name, 8 characters, dimension

(2)

RELNM2 - second relation name, 8 characters,dimension

(2)

NEWREL - new relation name, 8 characters, dimension

(2)

ATT1 - attribute in first relation, for logical

comparison, 8 characters, dimension (2)

ISATT1 - subscript of ATT1, integer

ATT2 - attribute name in second relation for logical

comparison, 8 characters, dimension (2)

ISATT2 - subscript of ATT2, integer

LOPT - logical operator (EQ, NE, LT, LE, GT, GE, CS),

four characters

ICODE - error return, Integer

AUNION. The purpose of this routine is to combine two union-compat

ible relations (see interactive UNION). The subroutine can be used to

append tuple data from one relation to another.

www.manaraa.com

124

Syntax: CALL AUNION (RELNM1, RELNM2, NEWREL, ICODSR, ICODE)

Parameters: RELNM1 - first relation name, eight characters,

dimension (2)

RELNM2 - second relation name, eight characters,

dimension (2)

NEWREL - can be RELNM1, RELNM2, or a new relation name,

eight characters, dimension (2)

ICODSR - integer

= 0 insert data obeying all relation definition

rules

= 1 replace old data If primary key conflict

occurs

ICODE - error return, Integer

* 0 if relations are not union compatible

relations

AINTSC. The intersection of two (union-compatible) relations is the

set of all tuples belonging to both relations.

Syntax: CALL AINTSC (RELNM1, RELNM2, NEWREL, ICODE)

Parameters: (see AUNION)

AMINIM. The purpose of this routine is to retrieve the minimum value

from the relation for each attribute listed.

Syntax: CALL AMINIM (RELNAM, NATT, ATT, ISATT, VALUE, ICODE)

Parameters: RELNAM - see ASELCT

NATT - see ASELCT

ATT - see ASELCT

ISATT - see ASELCT

VALUE - minimum values of the attributes, dimension

(sum of the dimensions, or word length per

www.manaraa.com

125

element times the dimension for character

type, of ATT)

AMAXIM. The purpose of this subroutine is to retrieve the maximum

value from the relation for each attribute listed.

Syntax: CALL AMAXIM (RELNAM, NATT, ATT, ISATT, VALUE, ICODE)

Parameters: VALUE - maximum values of the attributes, dimension

(see AMINIM)

ACOPPT. This subroutine copies the entire permanent database to

the temporary database level, replacing all current information at the

temporary level.

Syntax: CALL ACOPPT (ICODE)

Parameters: ICODE - error return, integer

ACOPTP: This subroutine copies the entire temporary database to

the permanent database level, replacing all current Information at the

permanent level.

Syntax: CALL ACOPTP (ICODE)

Parameters: ICODE - error return, integer

ACOPDB. The purpose of this subroutine is to allow one relation

to be copied to another. If both relations involved exist, then the data

tuples from one relation replace the data tuples of the second relation.

If the second relation does not exist, then it is created with a schema

identical to the first relation, and then tuple replacement proceeds as

above.

Syntax: CALL ACOPDB (RELNM1, RELNM2, ICODE)

Parameters: RELNM1 - first relation name, eight characters,

dimension (2) (see COPY command)

RELNM2 - Second relation name, eight characters,

dimension (2) (see COPY command)

www.manaraa.com

126

ICODE - error return, integer

Program Architecture

The architecture of ARIS Is illustrated conceptually in figure A18.

The architecture is structured in several levels for two reasons. First,

the levels provide two separate packages in which one package can be

used as a library of FORTRAN subroutines that can be called from applica

tion programs. The other package, the interactive system, consists of

a controller and a user command translator and the library. For each

interactive command, there exists a subroutine to perform the identical

function. Thus, application programs can have as much or more flexibility

than the interactive system.

A second reason for the levels is to separate the host computer

subroutines from the rest of the system to ease the conversion process

from one computer to another. This separation limits the number of ARIS

subroutines that use host subroutines to only a few. The host subroutines

required are for random access files, sorting, and the date and time.

Conversion to systems with word lengths other than 32 bits is more cumber

some.

The MAIN level simply interprets the type of user command in order

to select the correct parsing routine. The parsing routine translates

the command and constructs the calling parameters for the command. The

command routines actually perform the desired data management function,

such as SELECT, UNION, 30IN, etc. The command routines interact with the

internal storage of the information (see INTERNAL STRUCTURE). The

internal storage routines consist of various data structures to store

and retrieve tuple data. These internal storage routines In turn use

the random access procedures that are provided by the host computers to

www.manaraa.com

127

physically store and retrieve data from the disk. At the command level,

the SELECT routine uses the sort package provided by the host computer.

Internal Structure

The B*-tree data structure Is used to store and retrieve data

because It maintains logarithmic performance for random access of large

databases and can also be used to retrieve data sequentially. Reference

A5 provides a detailed discussion of B*-trees.

All locations of data (both relation and tuple) are determined

with the B*-tree. For each key (i.e., relation name) in the B*-tree,

there exists the disk location on which the data is stored. Basically

the B*-tree consists of three levels: B-tree (index), sequence list,

and replicate list (Fig. A19). The B-tree provides a road map to the keys

(relation name or inverted attribute values) in the linked lists. Once

the key is found in the linked list with the B-tree, the location of the

relation or tuple that is associated with that key can be determined. If

duplicates of the key exist (dupllcates-allowed specification on an

inverted attribute), the replicate list provides a list of the other disk

locations of tuples associated with that key value.

Figure A20 illustrates the insertion of keys into a B*-tree. The

maximum number of keys per block is three for this example. Insertion

starts at the linked list level where the block consists of the keys, the

disk location associated with each key, a pointer to the block previous

to the current block and a pointer to the next block. The first key to

be inserted is B (Fig. A20a). Since there are no other blocks, there are

no previous or next pointers. The next two keys are inserted in Figure

A20b. As shown In Figure 20b, the keys in a block are placed in ascending

order. Because there is no more room to insert the next key, F, in the

www.manaraa.com

128

list block, the list block is split and the middle key (actually left of

middle since no middle key exists) is promoted to the B-tree as shown in

Figure A20c. The format of the B-tree block is Just the key itself (no

disk location) and pointers to the leaf blocks. Note that the

next/previous pointers in the list block now exist. Figure A20d shows

the split after the keys Z and X are inserted. Another split is shown in

Figure A20e. The final two insertions not only split the linked list

block but also the B-tree block. Note that the key F is not needed in both

levels of the B-tree but is needed in both the B-tree and the list (Fig.

A20f).

To find the disk location of the tuple where the key is equal to N,

the key N is compared with F at the root of the tree in the B-tree.

Because N is greater than F, the right pointer is followed. At the next

level, N is compared with L. ' The key N is greater than L, so it is

compared with the next key P. Because N is less than P, the appropriate

path is followed and comparisons are made at the list level. The key N is

found and the tuple disk location of 8 is returned to be used to position

the disk so that the tuple can be read.

To find all tuples greater than N, the list is simply followed to

the right. The process of searching for the key with the B-tree and

processing the keys sequentially is called an index-sequential access.

Other logical operations are similarly processed. Thus the B*-tree is

a powerful data structure for relational queries.

In reality the list block also has duplicate pointers added for each

key, in order to store disk locations of tuples of attributes that have

the same inverted attribute value. Figure A19 illustrates the replicate

list where the replicate block consists of the disk locations for 3 keys

www.manaraa.com

129

and next/previous pointers.

In the previous discussion, a block could only hold a maximum of 3

keys. For the present Implementation on the PRIME computer, the node

size was optimized for relations with a large number of entries (greater

than 5,000). As shown In Figure A21, the block size was selected to be

120 keys. In Reference A4, the minimization is a trade of disk access

time (large for small number of keys) versus disk character transmission

time and key search time (large for large number of keys). To minimize

key search time in a block, a binary search (Ref. A2) is used instead of

the linear search in the current ARIS configuration.

For deletion of keys in the B-tree, sequence list, and replicate

list, a deletion flag is used instead of collapsing the blocks to

accommodate the empty space (suggested in Ref. A4-). The delete flag in

the B-tree is very useful since the keys in the B-tree do not have to be

redistributed to restore balance, and separate blocks do not have to be

concatenated. Oeletion is faster with the space left after a deletion

is reclaimed if possible. Problems occur with delete flags since only the

flag is set when deletion occurs. On insertion, the space left after a de

letion is reclaimed if possible. Problems with delete flags can occur

after many deletions because searches for keys include the deleted keys.

Also, disk space is occupied by deleted keys and associated information.

To correct the problem, the RECLAIM command can be executed. This command

reads the old database and creates another with the exact same infor

mation. This new database not only has all the delete data, keys,

and flags removed, but it also stores all the tuple data together

physically on the disk. This contiguousness of data can increase re

trieval performance significantly because disk seek time is reduced.

www.manaraa.com

130

The complete B*-tree structure is used for relation definition

retrieval and for tuple retrieval with relations that have at least

one inverted attribute. To retrieve tuples from a relation with an

inverted attribute based on a WHERE clause that does not include the

inverted attribute, each tuple is retrieved by using only the sequence

and replicate list of the inverted attribute. Thus every tuple in the

relation must be compared to the condition set by the WHERE clause. For

relations with no attribute inversion, only the sequence list structure

is used to store the tuple disk locations. The tuples are added to the

list in chronological order of insertion.

Performance between B-tree and list (sequential) structures can be

compared in Table A1. To retrieve a tuple based on an attribute value

(assuming unique values), there is a 5 to 83,334- ratio of disk access

for the the B-tree versus the list structure for large number of tuples.
3Even for a small database (tuple entries » 10), the performance com

parison is favorable. There is a 2 to 1 disk size penalty for this

performance. Also, insertion of a tuple into a B-tree can take a

significant amount of time since the B-tree must be searched on each

insertion, and there is an added overhead when a B-tree node must be

split. For storage in the list, list location of the last tuple entry

is stored in the relation table. Insertion is simple because only the

tuple location is written at this specified list location and this list

location is updated. For the B*-tree, the list location is determined by

searching the tree, key and tuple location is written in the list, and the

key is inserted in the tree. Thus the trades between inversion versus

non-inversion are insertion time, disk storage, and retrieval time.

www.manaraa.com

131

System Architecture

The complete system architecture Is presented In Figure A22. Its

concept is to separate data from the locators of the data so that

techniques to retrieve the locations can easily be changed to meet growing

requirements and to place the locations in blocks (see Internal Structure)

to increase storage/retrieval/deletion performance over other

architectures.

The data section consists of d header, a definition of each relation,

and the data for each tuple for each relation. Figure A22 illustrates

how the data would appear after a RECLAIM command.

The header (Fig. A23) is used for two purposes. First it locates

the B*-tree structure that is used to locate the relation definition

table. It not only locates the B-tree for fast relation retrieval, it

also locates the beginning (and the end) of the linked list to deter

mine all relations in the database. The second purpose of the header is

to provide the next free location in each of the four database files.

These location values must be updated whenever new information is stored

(at the next free location in any of these files).

The relation definition table (Fig. A24) consists of the relation

name attribute descriptions and the pointers to locations of inverted

attribute(s), B-tree(s), and linked list(s). As shown in Figure A22, the

relation table points to the B*-tree structure that in turn points to the

tuple data. Two relations are shown, one that has one inverted attribute

and another with an inversion (degenerate B*-tree).

To insert a relation, the relation definition table is developed and

stored at the next free data location. The header pointer to the relation

www.manaraa.com

132

B*-tree Is followed, the relation name is stored in the B-tree, the

relation name and location are stored in the linked list block split,

the storage location is determined from the next free locations in the

header and the new block is stored at this location. Finally, the header

next free locations are updated.

To store the first tuple in a relation with an inverted attribute,

the relation definition table must be retrieved by using the relation

B*-tree. A pointer to the B-tree (also to the linked-list at the same

location) is then stored in the relation definition table. The

tuple is written to the disk at the next free data location. The B-tree

is created with the attribute value and tuple location. For multiple

inversions, this B-tree creation process must be repeated for each

inversion. The relation definition table is rewritten to the disk and

the next free locations are updated and rewritten with the rest of the

header. To add the next tuple, the same procedure is followed except

that the attribute value and location are simply added to the block in

the B*-tree structure. To increase performance, buffers are employed

for each type file to reduce the number of physical disk accesses. Disk

accesses in the location files do not occur until a block is split or a

new relation is stored or retrieved. Tuple and header data storage

retrieval is always a physical disk access.

The system architecture for a temporary database is exactly the

same as shown in Figure A22. To access the temporary database, the file

unit numbers for the four permanent database files are changed to the

file unit numbers used for the four temporary database files. The header

is also changed for the temporary database. Once these values (4- unit

numbers and 7 header values) are changed, the temporary database is

www.manaraa.com

133

processed exactly the same as the permanent database. Thus, switching

from one database to another has about the same performance as working

with one single database.

Concluding Remarks

A relational information system has been designed and implemented

for use as a foundation system for computer-aided design applications.

Emphasis in the design was placed on performance considerations for tuple

storage and retrieval based on simple queries using state-of-the-art data

structures. No optimization for complex queries or performance

requirements for many of the relational functions have been considered.

The system was designed for a small group of uses (10 or less) and a

relatively small amount of data (less than 10 million words) because

security, backup, and recovery systems have not been considered.

A permanent and temporary database system was developed for data

transfer from one database to another on the same computer system. Also

a dump/load feature was developed to transfer information from one com

puter system to another.

The relational model is well suited for engineering applications

with its tabular form. Additional features like the variable length

and type attribute have been added to the model in order to ease the

interface of the model to a number of engineering application programs.

Finally, the system architecture has been designed to accept change

easily. As new requirements evolve from using the system in an engineer- -

ing environment, new data structures and models, query capability, and

data display can be added with minimal change in the system software.

www.manaraa.com

APPENDIX REFERENCES
134

^Date, C. 3. An Introduction to Database Systems. Addison-Wesley
Publishing Company, February 1982.

^Martin, Games. Computer Data-base Organization. Prentice-Hall,
Inc., 1977.

^Codd, E. F. "A Relational Model of Data for Large Shared Data
Banks.” CACM, Vol. 13, No. 6, 3une 1970.

^Horowitz, E. and Sahni, S. Fundamentals of Data Structures.
Computer Science Press, Inc., 1976.

A5Comer, D. "The Ubiquitous B-tree." ACM Computer Surveys, Vol.
11, No. 2, 3une 1979.

www.manaraa.com

TUPLES

NUMBER OF TUPLES 102 103 10* 105 106
107

B-TREE NUMBER OF BLOCKS (WORST CASE) 4 3 W 7 3W82 3M 826
NUMBER OF BLOCK ACCESSES 2 3 3 H 5 5

LINKED NUMBER OF BLOCKS 2 17 167 1667 16667 166667
LIST NUMBER OF BLOCK ACCESSES 1 9 8U 834 8331* 83331*

Table A1 - Comparison of the B-tree and linked list structures

TEST

•RELATION NAME
ATTRIBUTES

TEST# MODEL# TUNNEL ENGINEER COMMENTS DATE

AWW001
LA70
OA22
LA22
T4433

SH10
SH10
SHH3
SH10
SST3

LTPT
LTPT
16 FOOT
UNITARY
LTPT

WILHITE
SPENCER
DIAMOND
SPENCER
LAMB

SHUTTLE LANDING TESTS
SHUTTLE SUBSONIC TESTS
ROCKWELL SHUTTLE TEST
SHUTTLE SUPERSONIC TEST
SST SUBSONIC ENGINE TEST

05/011/77
01/05/80
12/22/77
05/15/78
10/15/73

CARDINALITY = NUMBER OF TUPLES - 5

Fig A1 - Example of a relation

www.manaraa.com

♦♦■ I;*#*-***##*#*##**###**#**-#**#***#*#*#**

* AVID RELATIONAL INFORMATION SYSTEM *
» *
* (A R IS) *
* *

• WED. SEP 2 6 1984 1 5 :2 3 : 2 6 »
• #
i n * * * # # # * # * * * * * * * # # * * * # # # * * # * * # * * * # * # * - * # * * - *

INPUT DATABASE NAME(S)
>DBNAME

BEGIN INTERACTIVE SESSION
>HELP

COMMAND ABBREV PHRASE

ASSIGN _ ASS I v a l u e TO a l IN r e l WHERE.
CHANGE - CHAN a l TO a 2 IN r e l
CHANGE r e l l TO r e l 2
CHANGE a l IN r e l TO INV
CHANGE a l IN r e l TO NONINV
CREATE - CREA
DELETE - DELE r e l CWHERE. . . . I
DELETE RELATION r e l
INPUT - INPU r e l
INPUTS - INPU r e 1
INPUTR r e 1
INTERSECT - INTE r o l l WITH r e l 2 CQIVING. . .
JO IN - JO IN r e l l AND r e l 2 OVER a l

CEQ. LT. GT. . . . 3 COIVINO.
PRINT - PRIN r e 1
QUIT - QUIT
RECLAIM - RECL
RELATION - RELA C re l3
SELECT - SELE * FROM r e l CWHERE. . 3. CUP

CGIVING. . . 3 CRENAME. . .
TREE SEARCH - TSEL * FROM r e l ROOT a l EQ v a l i

THRU a 2 CBY v a l u e LEVI
CGIVING. . . 3

UNION - UNIO r o l l AND r e 12 CGIVING. . 3

UNIONS - r e l l AND r e l 2 CGIVING. . . 3

UNIONR - r e l l AND r * 1 2 CGIVING. . 3

DUMP DATA. _ DUMP CC r e l 3 . f i l e n a m e]
SCHEMA

DUMP DATA - DDUMP C C rel3> f i l e n a m e]
DUMP SCHEMA - SDUMP C C r e l 3 . f i l e n a m e]
READ IN DATA - LOAD Cf i l e n a m e]

SCHEMA
READ IN DATA - DLQAD C r e l . f i l e n a m e]
READ IN SCHEMA - SLOAD C f i l e n a m e]

>GUIT

Fig A2 - Initiation, HELP, and QUIT commands

www.manaraa.com

««»»*«******************»*»**«****<
*

» AVID RELATIONAL INFORMATION SYSTEM
«
* (A R IS)
»
«
* MED. SEP 2 6 1984 1 3 :1 1 :5 9
*

INPUT DATABASE NAME(S)
ZDBNAME

BEGIN INTERACTIVE SESSION
>CREATE
RELATION NAME
/TEST
NUMBER OF ATTRIBUTES
>6
ATTRIBUTE NAME C I I
/T E ST #
DIMENSION OF ATTRIBUTE (1)
> 1
DATA TYPE (1)
/CHAR
LENGTH OF EACH CHARACTER STRING
;-s
INVERSION (1) - - Y/N
ZY
PART OF PRIMARY KEY - - Y/N
: n
ATTRIBUTE NAME (2)
/MODEL#
DIMENSION OF ATTRIBUTE (2)
Z1
DATA TYPE < 2)
'LOAF
LENGTH OF EACH CHARACTER STRING
>8
INVERSION (2) — Y/N
>N
PART OF PRIMARY KEY — Y/N
:-n
ATTRIBUTE NAME (3)
/TUNNEL
DIMENSION OF ATTRIBUTE (3)
/I
DATA TYPE < 3>
>CHAR
LFNCTH OF EACH CHARACTER STRING
0

Fig A3 - Initiate database and enter

INVERSION (31 — Y/N
ZN
PART OF PRIMARY KEY — Y /N
ZN
ATTRIBUTE NAME < 4 1
/ENGINEER
DIMENSION OF ATTRIBUTE (4)
>1
DATA TYPE (4>
/CHAR
LENGTH OF EACH CHARACTER STRING
>8
INVERSION (4) — Y/N
ZN
PART OF PRIMARY KEY — Y/N
ZN
ATTRIBUTE NAME (5)
/COMMENTS
DIMENSION OF ATTRIBUTE (5)
/I
DATA TYPE (5)
/CHAR
LENGTH OF EACH CHARACTER STRING
Z24
ATTRIBUTE NAME (6)
/DATE
DIMENSION OF ATTRIBUTE (6)
/I
DATA TYPE < 6)
/CHAR
LENGTH OF EACH CHARACTER STRING
>8
INVERSION (6) — Y/N
ZN
PART OF PRIMARY KEY — Y /N
ZN

RELATION TEST

ATTRIBUTE TYPE NWORDS PRIMARY KEY INVERSION
TEST# C 1) CHAR* 8 2 N Y
MODEL# (1) CHAR* 8 2 N N
TUNNEL (1) CHAR* 8 2 M N
ENGINEER! 1) CHAR* 8 2 N N
COMMENTS(1 > CHAR* 24 6 N N
DATE < 1) CHAR* □ 2 N N

O ENTRIES PRESENTLY u
relation TEST definition ^

www.manaraa.com

>CREATE

RELATION NAME
: m od el
NUMBER OF ATTRIBUTES
>4
ATTRIBUTE NAME (1)
;-M#
DIMENSION OF ATTRIBUTE (I)
>1
DATA TYPE < I>
>CHAR
LENGTH OF EACH CHARACTER STRING
:o
INVERSION (I) — Y/N
:n
PART OF PRIMARY KEY ~ Y /N
:.n
ATTRIBUTE NAME < 2)
I’TYPE
DIMENSION OF ATTRIBUTE (2)

1
DATA TYPE (2)
Z’CHAR
LENGTH OF EACH CHARACTER STRING
:s
INVERSION (2) - - Y/N
: n
PART OF PRIMARY KEY — Y/N
:n
ATTRIBUTE NAME (3)
: COMMENTS
DIMENSION OF ATTRIBUTE (3)

1
DATA TYPE < 3>

CHAR
LENGTH OF EACH CHARACTER STRING
.•24
ATTRIBUTE NAME < 4>
-SCALE
DIMENSION OF ATTRIBUTE < 4>
: I
DATA TYPE (4)
: h e a l
INVERSION (4) — Y/N
_N
PART OF PRIMARY KEY Y/N

N

•»»»******»»*«»••#*
RELAtlON MODEL

* » * * * * * * * » » * * » » * » * »

ATTRIBUTE TYPE NWORDS PRIMARY KEY INVERSION
M« (1) CHAR* 8 2 N N
TYPE (1) CHAR* 8 2 N N
COMMENTS! 1) CHAR* 24 6 N N
SCALE (1 1 REAL I N N

0 ENTRIES PRESENTLY

Fig A4 - Enter relation MODEL definition

www.manaraa.com

:> CREATE

RELATION NAME
.TEST-RUN
NUMBER OF ATTRIBUTES
*8

AI TRIBUTE NAME (1)
>TEST#
DIMENSION OF ATTRIBUTE (1>
>1
DATA TYPE (1)
; CHAR
LENGTH OF EACH CHARACTER STRING
; b
INVERSION < t > — Y/N
.N
PART OF PRIMARY KEY — Y/N
:-n
ATTRIBUTE NAME (2)
'RUN#
DIMENSION OF ATTRIBUTE (2>
:i
DATA TYPE < 2)
.'-CHAR
LENGTH OF EACH CHARACTER STRING
>8
INVERSION < 2) — Y/N
VN
PART OF PRIMARY KEY — Y/N
. N
AlTRIBUTE NAME < 3)
ICOMMENTS
DIMENSION OF ATTRIBUTE { 3>
1 1
DATA TYPE < 3>
I-CHAR
LENGTH OF EACH CHARACTER STRING
M6
ATTRIBUTE NAME < 4)
TCONFIG
DIMENSION OF ATTRIBUTE (4)

t
DATA TYPE (4)

CHAR
LENGTH OF EACH CHARACTER S IP INC

8

INVERSION < 4> — Y/N
>N
PART OF PRIMARY KEY — Y/N
>N
ATTRIBUTE NAME (5)
>C1
DIMENSION OF ATTRIBUTE (5)
:>i
DATA TYPE (5)
>REAL
INVERSION (5) — Y/N
>N
PART OF PRIMARY KEY — Y/N
>N
ATTRIBUTE NAME (6)
>C2
DIMENSION OF ATTRIBUTE (b)
>1
DATA TYPE (&)
>REAL
INVERSION < 6) — Y/N
>N
PART OF PRIMARY KEY — Y/N
>N
ATTRIBUTE NAME (7)
-POLAR
DIMENSION OF ATTRIBUTE (7)
Ul
DATA TYPE (7)
>CHAR
LENGTH OF EACH CHARACTER STRING
; .-a
INVERSION < 7) — Y/N
>N
PART OF PRIMARY KEY — Y/N
;-n
ATTRIBUTE NAME < 8>
: mach
DIMENSION OF ATTRIBUTE t 8)
1

DATA TYPE < 8)
>REAL
INVERSION { 8) — Y/N
IN
PART OF PRIMARY KEY — Y/N
>N

Fig A5 - Enter relation TEST-RUN definition
(jj
VO

www.manaraa.com

RELATION TEST-RUN

• »••••• ••••••■>••«*«
ATTRIBUTE TYPE NUORDS PRIMARY KEY INVERSION
TEST# (I) CHAR* 8 2 N N
RUN# (1) CHAR* 8 2 N N
COMMENTS(1) CHAR* 16 4 N N
CONFIG (1) CHAR* 8 2 N N
C l (1) REAL 1 N N
C2 (I) REAL 1 N N
POLAR (1) CHAR* 8 2 N N
men I 1) REAL 1 N N

O ENTRIES PRESENTLY

Fig A5 (con't)

140

www.manaraa.com

7CREATE

RELATION NAME
iTDATA
NUMBER OF ATTRIBUTES
• 4

ATTRIBUTE NAME « 1)
;TEST#
DIMENSION OF ATTRIBUTE < 1)
>1
DATA TYPE (I)
;<char
LENGTH OF EACH CHARACTER STRING
:e
INVERSION < 1> — Y/N
: n
PART OF PRIMARY KEY — Y/N
;n
ATTRIBUTE NAME < 2>
‘•RUN#
DIMENSION OF ATTRIBUTE < 2>
>1
DATA TYPE < 2)
>CHAR
LENGTH OF EACH CHARACTER STRING
:a
INVERSION (2> — Y/N
>N
PART OF PRIMARY KEY — Y/N
'•N
ATTRIBUTE NAME (3)

POINT
DIMENSION OF ATTRIBUTE < 3)
>1
DATA TYPE (3)
>!NT
INVERSION < 3) — Y/N
>N
PART OF PRIMARY KEY — Y/N
>N
ATTRIBUTE NAME < 4)
; DATA
DIMENSION OF ATTRIBUTE < 4)
>4
DATA TYPE < 4)
}REAL.

»»••»*•*•»*«•••»»*•
» »
* RELATION TDATA *
* #

ATTRIBUTE TYPE NUQRDS PRIMARY KEY INVERSION
TEST# (I) CHAR* 8 2 N
RUN# < 1) CHAR* 8 2 N
POINT < 1) INT I N
DATA { 41 REAL 4 N

0 ENIRIES PRESENTLY

Fig A6 - Enter relation TDATA definition

zz
zz

www.manaraa.com

DELATION >CHANGE MU TO MODEL* IN MODEL

* »«**#*«***«**« **»ii*«**«
*

* RELATIONS IN DATABASE

« « * # * * » « * * * * * * * * * * * * * * * * i

RELATION MODEL
RELATION TDATA
RELATION TEST
RELATION TEST-RUN

**« NO RELATIONS IN TEMPORARY DATABASE * * *

: RELATION MODEL

RELATION MODEL

>CMANCE MODEL* IN MODEL TO INV

^RELATION MODEL

*»••«•»•••»•»••**»*»#
* *
• RELATION MODEL •

ATTRIBUTE
MODEL* (
TYPE (
COMMENTS!
SCALE (

* *

1)
I)
1)
1)

TYPE
CHAR»
CHAR*
CHAR*
REAL

6
8

24

NUORDS

6
1

PRIMARY KEY
N
N
N
N

INVERSION
Y
N
N
N

0 ENTRIES PRESENTLY

ATTRIBUTE
H# (
TYPE <
COMMENTS!
SCALE !

1)
1)
1)
I)

TYPE
CHAR*
CHAR*
CHAR*
REAL

8
8

24

NUORDS
2
2
&
1

PRIMARY KEY
N
N
N
N

INVERSION
N
N
N
N

>QUIT

O ENTRIES PRESENTLY

Fig A7 - CHANGE and RELATION commands and terminate example session

www.manaraa.com

• AVID RELATIONAL INFORMATION SYSTEM
*
* (A RIS)

• MED. SEP 2 6 1984 1 3 :2 2 : 3 2

INPUT DATABASE NAME1S)

>DBNAME

BEGIN INTERACTIVE SESSION

> INPUT TEST

TYPE *END TO RETURN TO MAIN PROCRAM

TEST# ! 1) 8 CHARACTERS
>AW001

MODEL# (1) 8 CHARACTERS
>SHlO

TUNNEL (1) 8 CHARACTERS
>LTPT

ENGINEER! 1) 8 CHARACTERS
>WILHITE

COMMENTS! 1) - 24 CHARACTERS
>SHUTTLE LANDING TEST

DATE ! 1) 8 CHARACTERS
> 0 5 /0 4 /7 7

TEST# ! 1) 8 CHARACTERS
>*END

Fig A8 - In it ia te session and enter a tuple into relation TEST 143

www.manaraa.com

>DLOAD TEST AWTEST

>PRINT TEST

#**#*#*»******
RELATION TEST *

*

««**•»«»»»***»»*»*»»
TEST#

AMOOl
LA22
LA70
□A22
T 4433

MODEL#

SHIO
SHIO
SHIO
SH43
SST3

TUNNEL

LTPT
UNITARY
LTPT
16 FOOT
LTPT

ENGINEER

WILHITE
SPENCER
SPENCER
DIAMOND
LAMB

COMMENTS

SHUTTLE LANDING TEST
SHUTTLE SUPERSONIC TEST
SHUTTLE SUBSONIC TEST
ROCKWELL SHUTTLE STUDY
SST SUBSONIC ENGINE TEST

DATE

0 5 /0 4 / 7 7
0 5 /1 5 / 7 8
0 1 /0 5 / 8 0
1 2 /2 2 /7 7
1 0 /1 5 /7 3

>RELATIQN TEST

* * * * * * * * * * * * * * * * * * *

RELATION TEST

ATTRIBUTE TYPE NWORDS PRIMARY KEY INVERSION

TEST# (1) CHAR* 8 2 N Y
MODEL# < 1) CHAR* 8 2 N N
TUNNEL { 1) CHAR* 8 2 N N
ENGINEER(1) CHAR* 8 2 N N
COMMENTS! 1) CHAR* 24 6 N N
DATE (1) CHAR* 8 2 N N

S ENTRIES PRESENTLY

Fig A9 - Load tuple data into relation TEST from an external file

www.manaraa.com

;<DLOAD MODEL AUMODEL

>PRINT MODEL

***»*•*•»*»»«»••••••
RELATION MODEL

MODEL# TYPE

■ *

COMMENTS SCALE

SHIO SHUTTLE ROCKWELL HIGH FIDELITY 1 . OOOOOE-2
SH43 SHUTTLE ROCKWELL HICH FIDELITY 3 . OOOOOE-2
SST3 SSI' MIXED-MODE JE T ENGINE MO S.OOOOOE-2

>DLOAD TEST-RUN AWT- R

>PRINT TEST-RUN

•
* RELATION TEST-RUN
•

«
*
*

*»

TEST# RUN# COMMENTS CONFIG C l C2 POLAR MACH

LA70 1 BODY ALONE B 0 . OOOOOE+O 0. OOOOOE+O ALPHA 4. OOOOOE-1
LA70 2 WING-BODY BW 0. OOOOOE+O 0. OOOOOE+O ALPHA 4. OOOOOE-1
LA70 3 ELEVON AT 10 DEG BW 0. OOOOOE+O 0. OOOOOE+O ALPHA 4 OOOOOE-1
LA70 4 RUDDER AT 2 DECR BUT 0 .0 0 0 0 OE+O 0. OOOOOE+O ALPHA 4. OOOOOE-1
0A22 1 WING-BODY-TAIL BUT 0. 0 0 0 0 OE+O 0 . OOOOOE+O ALPHA 9. 9 0 0 0 0 E -1
0A22 2 WINC-BODY-TAIL BUT 0. OOOOOE+O 0. OOOOOE+O BETA 1. 02000E + 0
LA22 1 WING #1 BUT 0. OOOOOE+O 0. OOOOOE+O ALPHA 2. 43000E + 0
LA22 2 WING #2 BUT 0 . OOOOOE+O 0. OOOOOE+O ALPHA 2. 45000E + 0
LA22 3 WING #1 BUT 0. OOOOOE+O 0. OOOOOE+O ALPHA 2. 4 3000E +0
LA22 4 WING #2 BUT O. OOOOOE+O 0. OOOOOE+O ALPHA 2 4S000E +0
T 4433 2 ENCINE AT SOX TH BUT 0 . OOOOOE+O 0 OOOOOE+O ALPHA 3. OOOOOE-1
T 4433 3 ENGINE AT 100% T BUT 0 . OOOOOE+O O OOOOOE+O ALPHA 3. OOOOOE-l

Fig A10 - Load tuple data into relations 110DEL and TEST-RUN from external files

www.manaraa.com

>DL0AD TDATA AMDATA

>PRXNT TDATA

RELATION TDATA

TEST# RUN* POINT DATAC 1) DATAC 2) DATAC 3) DATAC4)
----------- — — — ----------- —_ --------------- -- --- -- -------- — _
LA70 1 1 - 2 . 20000E + 0 0 . OOOOOE+O - 1 . 8 0 0 0 0 E -1 8 . 9 0 0 0 0 E -2
LA70 1 2 - 6 . 0 0 0 0 0 E -2 0 . OOOOOE+O - 4 . OOOOOE-2 8 . 3 0 0 0 0 E -2
LA70 1 3 4 . 40000E + 0 0 . OOOOOE+O 2 . 10000E -1 9 . 7 0 0 0 0 E -2
LA70 1 4 8 . 80000E + 0 0 . OOOOOE+O 4. OOOOOE-1 1 . 4 0 0 0 0 E -1
LA70 1 S 1. 2 4 0 0 0 E + 1 0. OOOOOE+O 5 . 5 0 000E -1 2 . OlOOOE-t
LA70 2 1 - 2 . 30000E + 0 0 . OOOOOE+O - 2 . 5 0 0 0 0 E -1 9 . 4 0 0 0 0 E -2
LA70 2 2 - 5 . 0 0 0 0 0 E -2 0 . OOOOOE+O - 2 . OOOOOE-2 8 . 7 0 0 0 0 E -2
LA70 2 3 4 . 20000E + 0 O.OOOOOE+O 3 . 3 0 0 0 0 E -1 1. OlOOOE-t
LA70 2 4 8 . 70000E + 0 0 OOOOOE+O 4. 8 0 0 0 0 E -1 1 . 4 4 0 0 0 E -1LA70 2 5 1 . 2 3 0 0 0 E + 1 0 . OOOOOE+O 6 . 2 0 0 0 0 E -1 2 . 05000E -1
LA70 3 1 - 2 . 70000E + 0 0 . OOOOOE+O - 3 . 5 0 0 0 0 E -1 9 . 7 0 0 0 0 E -2
LA70 3 2 0 . OOOOOE+O 0 OOOOOE+O 8 . OOOOOE-2 9 . 1 0 0 0 0 E -2
LA70 3 3 4 . 60000E + 0 0 OOOOOE+O 4 . 3 0 0 0 0 E -1 1. 0 5 0 0 0 E -I
LA70 3 4 8 . 20000E + 0 0 OOOOOE+O S .8 0 0 0 0 E - 1 1 . 4 8 0 0 0 E -1
LA70 3 5 1 . 21000E +1 0 . OOOOOE+O 7 . 2 0 0 0 0 E -1 2 . 0 9 0 0 0 E -1
LA70 4 1 - 2 . 70000E + 0 0 OOOOOE+O - 3 . 5 0 0 0 0 E -1 9 . 7 0 0 0 0 E -2
LA70 4 2 0 . OOOOOE+O 0 OOOOOE+O 8 . OOOOOE-2 9 . 1 0 0 0 0 E -2
LA70 4 3 4 . 60000E + 0 0 . OOOOOE+O 4 . 3 0 0 0 0 E -1 1 . OSOOOE-l
LA70 4 4 8 . 20000E + 0 0 . OOOOOE+O 5 . 8 0 0 0 0 E -1 1 4 8 0 0 0 E -1
LA70 4 S 1. 2 1 0 0 0 E + I 0 . OOOOOE+O 7 . 2 0 0 0 0 E -1 2 . 0 9 0 0 0 E -1
0A22 I 1 0 . OOOOOE+O 0 . OOOOOE+O - 4 . 2 0 0 0 0 E -2 8 . 3 0 0 0 0 E -2
OA22 I 2 2 . OOOOOE+O 0 . OOOOOE+O 9 . 7 0 0 0 0 E -2 8 . 5 6 0 0 0 E -2
0A22 1 3 4 . OOOOOE+O 0 . OOOOOE+O 2 . 0 7 0 0 0 E -1 9 . 6& 000E -2
0A22 1 4 8 . OOOOOE+O 0 . OOOOOE+O 2 . 9 4 0 0 0 E -1 1 . 1 3 800E -1
0A22 2 1 0 OOOOOE+O 0. OOOOOE+O - 4 . 2 0 0 0 0 E -2 8 . 3 0 0 0 0 E -2
OA22 2 n O. OOOOOE+O 2 . OOOOOE+O 9 . 70000E —2 8 . 5 6 0 0 0 E -2
0A22 2 3 0 . OOOOOE+O 4 . OOOOOE+O 2 . 0 7 0 0 0 E -1 9 . A A 000E-2
OA22 2 4 0 . OOOOOE+O 6 . OOOOOE+O 2 . 9 4 0 0 0 E -1 1 . 1 3 8 0 0 E -1
LA22 1 I 0 . OOOOOE+O 0. OOOOOE+O - 2 . 3 0 0 0 0 E -2 b. 4 0 0 0 0 E -2
LA22 1 2 1 . OOOOOE+1 0 . OOOOOE+O 4 . B 9 0 0 0 E -1 1. I0 0 0 0 1 --I
LA22 2 1 0 . OOOOOE+O 0 . OOOOOE+O - 2 . 4 0 0 0 0 E -2 F 9 0 0 0 0 E -2
LA22 2 2 1 . OOOOOE+I 0 . OOOOOE+O 5 . 0 3 0 0 0 E -1 9 . 7 0 0 0 0 E -2
LA22 3 1 0 . OOOOOE+O 0 . OOOOOE+O 2 . 0 0 0 0 0 E -3 0 . OOOOOE+O
LA22 3 2 1 . OOOOOE+1 0 . OOOOOE+O 5 . 0 4 0 0 0 E -1 1. 2 1 0 0 0 E -1
LA22 4 I 0 . OOOOOE+O 0 . OOOOOE+O 4 . 0 0 0 0 0 E -3 6 . 1 0 0 0 0 E -2
LA22 4 2 1 . OOOOOE+1 0 . OOOOOE+O 5 . 5 4 0 0 0 E -1 1. 0 1 0 0 0 E -1
T 4433 1 1 3 . OOOOOE+O 0 . OOOOOE+O 3 . 2 5 0 0 0 E -1 2 . 9 0 0 0 0 E -2
T 4433 2 1 3 . OOOOOE+O 0 . OOOOOE+O 3 . 2 5 0 0 0 E -1 2 . 2 0 0 0 0 E -2

Fig All - Load tuple data into relation TDATA from the external file AWDATA

www.manaraa.com

>SELECT * FROM TEST

TEST#

A WOOl
LA22
LA70
0A22
T 4433

SPRINT TEST

TEST#

AUOOl
LA22
LA70
0A22
T 4433

«***»#»*»#»»•*»»*«»#»
• *
* RELATION TEST *
• •

MODEL# TUNNEL ENGINEER COMMENTS DATE

SHIO
SHIO
SHIO
SH43
SST3

LTPT
UNITARY
LTPT
16 FOOT
LTPT

MILHITE
SPENCER
SPENCER
DIAMOND
LAMB

SHUTTLE LANDING TEST 0 5 /0 4 / 7 7
SHUTTLE SUPERSONIC TEST 0 5 /1 5 / 7 8
SHUTTLE SUBSONIC TEST 0 1 /0 5 / 8 0
ROCKWELL SHUTTLE STUDY 1 2 /2 2 /7 7
SST SUBSONIC ENGINE TEST 1 0 /1 5 /7 3

«
RELATION TEST *

«
#■«*•*#»•**»#«*•**

MODEL#

SHIO
SHIO
SHIO
SH43
SST3

TUNNEL

LTPT
UNITARY
LTPT
16 FOOT
LTPT

ENGINEER COMMENTS DATE

WILHITE
SPENCER
SPENCER
DIAMOND
LAMB

SHUTTLE LANDING TEST 0 5 /0 4 / 7 7
SHUTTLE SUPERSONIC TEST 0 5 /1 5 / 7 8
SHUTTLE SUBSONIC TEST 0 1 /0 5 / 8 0
ROCKWELL SHUTTLE STUDY 1 2 /2 2 /7 7
SST SUBSONIC ENGINE TEST 1 0 /1 5 /7 3

Fig A12 - Example of the default SELECT command

www.manaraa.com

a) >SELECT TEST* FROM TEST t»£RE ENGINEER EQ SPENCER ti > OR MODEL* EQ SHIO
•••••••«»•>•••«••••••• •
• RELATION TEST •
• •

TEST*
AUOOl
LA22
LA70

b) >SELECT TEST** RUN** MACH FROM TEST-RUN UHERE MACH EQ I TOL .3
• • • • • • • • • • • • • • • • • a - * * *

• •
• RELATION TEST-RUN *• »

TEST* RUN* HACH
0A22 1 9.90000E-I. OA22 2 I. 02000E+0

C) >SELECT • FROM TEST WCRE ENGINEER EQ SPENCER UP TEST*

• •
• RELATION TEST •• •

TEST* MODEL* TUNNEL ENGINEER CCHMENTS
LA22 SHIO UNITARY SPENCER SHUTTLE SUPERSONIC TEST
LA70 SHIO LTPT SPENCER SHUTTLE SUBSONIC TEST

d) >SELECT POINT* DATA! t > FROM TDATA U4ERE TEST* EQ LA70 AND RUN* EQ I GIVING LA70I RENAME ». ALPHA
>PHINT LA701 •••***•••••••••••••••

• •
• RELATION LA70I •• •

POINT ALPHA
1 -2. 20000E«Q
2 -6. OOOOOE-23 4 40000£*0
4 8 OOOOOE+O
5 1. 24000L* I

D A T E

09/15/7801/05/80

Fig A13 - Examples of the SELECT command -t-
00

www.manaraa.com

a) >PRINT TEST «***«••* *##*#***##***
« •
* RELATION TEST *
» »
•«*»•«••***••*«•»*«*»

TEST# MODEL# TUNNEL ENGINEER COMMENTS DATE

A W001 SHIO LTPT WILHITE SHUTTLE LANDING TEST 0 5 /0 4 / 7 7
LA22 SHIO UNITARY SPENCER SHUTTLE SUPERSONIC TEST 0 5 /1 5 / 7 8
LA70 SHIO LTPT SPENCER SHUTTLE SUBSONIC TEST 0 1 /0 5 / 8 0
0A22 SH43 16 FOOT DIAMOND ROCKWELL SHUTTLE STUDY 1 2 /2 2 /7 7
T 4433 SST3 LTPT LAMB SST SUBSONIC ENGITE TEST 1 0 /1 5 /7 3

>DELETE TEST WHERE TEST# EG T 4433

>PRINT TEST
» » * » * # « * * » * * # » * * * » * *
w
* RELATION TEST •

M.

*»**#»»*#**«•*******»*

TEST# MODEL# TUNNEL ENGINEER COMMENTS DATE

AW001 SHIO LTPT WILHITE SHUTTLE LANDING TEST 0 5 /0 4 / 7 7
LA22 SHIO UNITARY SPENCER SHUTTLE SUPERSONIC TEST 0 5 /1 5 / 7 8
LA70 SHIO LTPT SPENCER SHUTTLE SUBSONIC TEST 0 1 /0 5 / 8 0
0A22 SH43 16 FOOT DIAMOND ROCKWELL SHUTTLE STUDY 1 2 /2 2 /7 7

b) >ASSIGN UILHITE TO ENGINEER IN TEST WHERE TEST* EG LA22
SPRINT TEST

• RELA1ION TEST

TEST# MODEL# TUNNEL ENGINEER

AW001 SHIO LTPT WILHITE
LA22 SHIO UNITARY WILHITE
LA70 SHIO LTPT SPENCER
OA22 SH43 16 FOOT DIAMOND

Fig A14 - Examples of the DELETE and

COMMENTS DATE

SHUTTLE LANDING TEST 0 5 /0 4 / 7 7
SHUTTLE SUPERSONIC TEST 0 5 /1 5 / 7 8
SHUTTLE SUBSONIC TEST 0 1 /0 5 / 8 0
ROCKWELL SHUTTLE STUDY 1 2 / 2 2 / 7 /

149

www.manaraa.com

3SELECT MODEL# FROM MODEL WHERE TYPE EQ SHUTTLE GIVING TEMP

>JO IN TEMP AND TEST OVER MODEL# GIVING T EW 2

>PRINT TEMP2

• •
* RELATION TEMP2 «
• #

TEST# MODEL# TUNNEL ENGINEER COMMENTS DATE

AUOOl SHIO LTPT WILHITE SHUTTLE LANDING TEST 0 5 /0 4 / 7 7
0A22 SH43 16 FOOT DIAMOND ROCKWELL SHUTTLE STUDY 1 2 /2 2 /7 7

>S£LECT ENGINEER FROM TEMP2 WHERE TUNNEL EQ '1 6 FOOT'
« «***#*****■► •«•»»«••*
* «
* RELATION T EW 2 «
* *

ENGINEER

DIAMOND

>JO IN TEST AND TEW OVER MODEL# GIVING TEW 3

>PRINT TEMP3

«»«*#**#*****»»»***
• «
* RELATION TEMP3 *
* *

TEST# TUNNEL ENGINEER COMMENTS DATE MODEL# "

AW001 LTPT WILHITE SHUTTLE LANDING TEST 0 5 /0 4 / 7 7 SHIO
LA22 UNITARY WILHITE SHUTTLE SUPERSONIC TEST 0 5 /1 5 / 7 8 SHIO
LA70 LTPT SPENCER SHUTTLE SUBSONIC TEST 0 1 /0 5 / 8 0 SHIO
0A22 16 FOOT DIAMOND ROCKWELL SHUTTLE STUDY 1 2 /2 2 /7 7 SH43

Fig A15 - Example of the JOIN command

www.manaraa.com

a) >SELECT ENGINEER FROM TEMP3 WIERE TUNNEL EQ LTPT GIVING TEMP5

>SELECT ENGINEER FROM TEMP2 Ml ERE TUNNEL EQ LTPT GIVING TEMP4

>UNION TEH’S AND TEMP4

ENGINEER

WILHITE
SPENCER
WILHITE

b) > INTERSECT TEH»5 WITH TEMP4

ENGINEER

WILHITE

UNION and INTERSECT commands and an example of using subscripted attributes

www.manaraa.com

a) >MIN MACH IN "TEST-RUN

»••••••*••*•»•••••••
RELATION TEST-RUN

«••••*•••••»«••*••*
MACH

3 . OOOOOE-1

b) : MAX MACH IN TEST-RUN

C) >RELA

* *

RELATIONS IN DATABASE

* * * * * * * * * * * * * * * * * * * *

«
* RELATION TEST-RUN

* * * * * * * * * * * * * * * * * * * *

MACH

2 . 45000E + 0

RELATION MODEL
RELATION TDATA
RELATION TEST
RELATION TEST-RUN

*******•*»••••••••*••••»
RELATIONS IN TEMPORARY

DATABASE

•••••*••*•»»*•••••••••••
RELATION LA701
RELATION TEMP
RELATION TEMP2
RELATION TEMP3
RELATION TEMP4
RELATION TEMP5

>QUIT

Fig A17 - MIN, MAX, and RELATION commands and termination of the session

www.manaraa.com

ARIS

SOFTWARE

HOST COMPUTER

SOFTWARE

ImainI

I PARSING j-

| COMMAND|

TIME

DATE

INTERNAL

STORAGE

RANDOM ACCESS

FILES

PROGRAM

LIBRARY

INTERACTIVE

SYSTEM

Fig A18 - ARIS program architecture

www.manaraa.com

M l II II

]EH IGK1 I

B-TREE

*111 o . 2 i i i L ^ i n i « - » i i i i r 5 i > p . 3 i i i i k - w n x . 6 i i r z . 5 t i y
iSEQUENCE

LIST

I 111 12 n 3 l W n i T r I T l •REPLICATE
LIST

Fig A19 - Schematic of the internal structure

Ul

www.manaraa.com

r ^ T i n
a) Insert: (B,1)

HB. 1 ||0 .2 |7 ^ 1

b) In se rt: (P ,3). (G.2)
I 6 - 1 M l h p

c) Insert: (F.M)

d) Insert: (Z,5), (X,6) . e) Insert: (L,7), (N,8)

IK’ i M t 0*—HEdEmh—
f) Insert: (C,9), (E,10)

Z.5

x
Fig A20 - Progressive growth of the B -tree with insertions

www.manaraa.com

TIMING IS RELATIVE TO A 120 KEY BLOCK SIZE

INSERTING 10,000 KEYS TOOK 283 SECONDS

CPU and DISK

TIME

2 .0

1.8

1.6

1 . 2

1.0

o

o
o

©
©

50 100 150

o

J
200

BLOCK SIZE, KEYS PER BLOCK

Fig A21 - Block size optimization

www.manaraa.com

157

POINTER FILES 0 DATA FILE

HEADER

RELATION TABLERELATION
NAMES

TUPLE DATA

INVERTED
ATTRIBUTE

TUPLE
LOCATIONS

RELATION TABLE

POINTER FILES
TUPLE DATATUPLE

LOCATIONSB-TREE
SEQUENCE LIST Q

REPLICATE LIST Q

Fig A22 - Access structure architecture

www.manaraa.com

| = LOCATION OF

| RELATION NAME | BEGINNING OF | ENDING OF NUMER OF

B-TREE RELATION NAME RELATION NAME LEVELS

SEQUENCE LIST SEQUENCE LIST IN B-TREE

NEXT FREE LOCATION IN

B-TREE

FILE

SEQUENCE LIST

FILE

REPLICATE LIST

FILE

DATA

FILE

Fig A23 - Header record contents (8 words)

www.manaraa.com

RELATION NAME

NUMBER OF ATTRIBUTES
NAME
TYPE
DIMENSION
NUMBER OF CHARACTERS

NUMBER OF ATTRIBUTE INVERSIONS (50 MAXIMUM)
ATTRIBUTE NUMBER
LOCATION OF B-TREE
LOCATION OF BEGINNING OF SEQUENCE LIST
LOCATION OF ENDING OF SEQUENCE LIST
LEVELS IN B-TREE
DELETION FLAG

NUMBER OF ATTRIBUTES IN PRIMARY KEY (50 MAXIMUM)
ATTRIBUTE NUMBERS

NUMBER OF WORDS IN A TUPLE

NUMBER OF ENTRIES

Fig A24 - Relation table contents (558 words)

